Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dana Carroll is active.

Publication


Featured researches published by Dana Carroll.


Nature Biotechnology | 2005

Gene targeting using zinc finger nucleases

Matthew H. Porteus; Dana Carroll

The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cells endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability.


Genetics | 2011

Genome Engineering with Zinc-Finger Nucleases

Dana Carroll

Zinc-finger nucleases (ZFNs) are targetable DNA cleavage reagents that have been adopted as gene-targeting tools. ZFN-induced double-strand breaks are subject to cellular DNA repair processes that lead to both targeted mutagenesis and targeted gene replacement at remarkably high frequencies. This article briefly reviews the history of ZFN development and summarizes applications that have been made to genome editing in many different organisms and situations. Considerable progress has been made in methods for deriving zinc-finger sets for new genomic targets, but approaches to design and selection are still being perfected. An issue that needs more attention is the extent to which available mechanisms of double-strand break repair limit the scope and utility of ZFN-initiated events. The bright prospects for future applications of ZFNs, including human gene therapy, are discussed.


Molecular and Cellular Biology | 2001

Stimulation of homologous recombination through targeted cleavage by chimeric nucleases

Marina Bibikova; Dana Carroll; David J. Segal; Jonathan K. Trautman; Jeff Smith; Yang-Gyun Kim; Srinivasan Chandrasegaran

ABSTRACT Chimeric nucleases that are hybrids between a nonspecific DNA cleavage domain and a zinc finger DNA recognition domain were tested for their ability to find and cleave their target sites in living cells. Both engineered DNA substrates and the nucleases were injected into Xenopus laevis oocyte nuclei, in which DNA cleavage and subsequent homologous recombination were observed. Specific cleavage required two inverted copies of the zinc finger recognition site in close proximity, reflecting the need for dimerization of the cleavage domain. Cleaved DNA molecules were activated for homologous recombination; in optimum conditions, essentially 100% of the substrate recombined, even though the DNA was assembled into chromatin. The original nuclease has an 18-amino-acid linker between the zinc finger and cleavage domains, and this enzyme cleaved in oocytes at paired sites separated by spacers in the range of 6 to 18 bp, with a rather sharp optimum at 8 bp. By shortening the linker, we found that the range of effective site separations could be narrowed significantly. With no intentional linker between the binding and cleavage domains, only binding sites exactly 6 bp apart supported efficient cleavage in oocytes. We also showed that two chimeric enzymes with different binding specificities could collaborate to stimulate recombination when their individual sites were appropriately placed. Because the recognition specificity of zinc fingers can be altered experimentally, this approach holds great promise for inducing targeted recombination in a variety of organisms.


Annual Review of Biochemistry | 2014

Genome Engineering with Targetable Nucleases

Dana Carroll

Current technology enables the production of highly specific genome modifications with excellent efficiency and specificity. Key to this capability are targetable DNA cleavage reagents and cellular DNA repair pathways. The break made by these reagents can produce localized sequence changes through inaccurate nonhomologous end joining (NHEJ), often leading to gene inactivation. Alternatively, user-provided DNA can be used as a template for repair by homologous recombination (HR), leading to the introduction of desired sequence changes. This review describes three classes of targetable cleavage reagents: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas RNA-guided nucleases (RGNs). As a group, these reagents have been successfully used to modify genomic sequences in a wide variety of cells and organisms, including humans. This review discusses the properties, advantages, and limitations of each system, as well as the specific considerations required for their use in different biological systems.


Science | 2015

A prudent path forward for genomic engineering and germline gene modification

David Baltimore; Paul Berg; Michael R. Botchan; Dana Carroll; R. Alta Charo; George M. Church; Jacob E. Corn; George Q. Daley; Jennifer A. Doudna; Marsha Fenner; Henry T. Greely; Martin Jinek; G. Steven Martin; Edward Penhoet; Jennifer M. Puck; Samuel H. Sternberg; Jonathan S. Weissman; Keith R. Yamamoto

A framework for open discourse on the use of CRISPR-Cas9 technology to manipulate the human genome is urgently needed Genome engineering technology offers unparalleled potential for modifying human and nonhuman genomes. In humans, it holds the promise of curing genetic disease, while in other organisms it provides methods to reshape the biosphere for the benefit of the environment and human societies. However, with such enormous opportunities come unknown risks to human health and well-being. In January, a group of interested stakeholders met in Napa, California (1), to discuss the scientific, medical, legal, and ethical implications of these new prospects for genome biology. The goal was to initiate an informed discussion of the uses of genome engineering technology, and to identify those areas where action is essential to prepare for future developments. The meeting identified immediate steps to take toward ensuring that the application of genome engineering technology is performed safely and ethically.


Genetics | 2005

Efficient Gene Targeting in Drosophila With Zinc-Finger Nucleases

Kelly J. Beumer; Gargi Bhattacharyya; Marina Bibikova; Jonathan K. Trautman; Dana Carroll

This report describes high-frequency germline gene targeting at two genomic loci in Drosophila melanogaster, y and ry. In the best case, nearly all induced parents produced mutant progeny; 25% of their offspring were new mutants and most of these were targeted gene replacements resulting from homologous recombination (HR) with a marked donor DNA. The procedure that generates these high frequencies relies on cleavage of the target by designed zinc-finger nucleases (ZFNs) and production of a linear donor in situ. Increased induction of ZFN expression led to higher frequencies of gene targeting, demonstrating the beneficial effect of activating the target. In the absence of a homologous donor DNA, ZFN cleavage led to the recovery of new mutants at three loci—y, ry and bw—through nonhomologous end joining (NHEJ) after cleavage. Because zinc fingers can be directed to a broad range of DNA sequences and targeting is very efficient, this approach promises to allow genetic manipulation of many different genes, even in cases where the mutant phenotype cannot be predicted.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases.

Kelly J. Beumer; Jonathan K. Trautman; Ana Bozas; Ji-Long Liu; Jared Rutter; Joseph G. Gall; Dana Carroll

We report very high gene targeting frequencies in Drosophila by direct embryo injection of mRNAs encoding specific zinc-finger nucleases (ZFNs). Both local mutagenesis via nonhomologous end joining (NHEJ) and targeted gene replacement via homologous recombination (HR) have been achieved in up to 10% of all targets at a given locus. In embryos that are wild type for DNA repair, the products are dominated by NHEJ mutations. In recipients deficient in the NHEJ component, DNA ligase IV, the majority of products arise by HR with a coinjected donor DNA, with no loss of overall efficiency in target modification. We describe the application of the ZFN injection procedure to mutagenesis by NHEJ of 2 new genes in Drosophila melanogaster: coil and pask. Pairs of novel ZFNs designed for targets within those genes led to the production of null mutations at each locus. The injection procedure is much more rapid than earlier approaches and makes possible the generation and recovery of targeted gene alterations at essentially any locus within 2 fly generations.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells

Jason Morton; M. Wayne Davis; Erik M. Jorgensen; Dana Carroll

Zinc-finger nucleases are chimeric proteins consisting of engineered zinc-finger DNA-binding motifs attached to an endonuclease domain. These proteins can induce site-specific DNA double-strand breaks in genomic DNA, which are then substrates for cellular repair mechanisms. Here, we demonstrate that engineered zinc-finger nucleases function effectively in somatic cells of the nematode Caenorhabditis elegans. Although gene-conversion events were indistinguishable from uncut DNA in our assay, nonhomologous end joining resulted in mutations at the target site. A synthetic target on an extrachromosomal array was targeted with a previously characterized nuclease, and an endogenous genomic sequence was targeted with a pair of specifically designed nucleases. In both cases, ≈20% of the target sites were mutated after induction of the corresponding nucleases. Alterations in the extrachromosomal targets were largely products of end-filling and blunt ligation. By contrast, alterations in the chromosomal target were mostly deletions. We interpret these differences to reflect the abundance of homologous templates present in the extrachromosomal arrays versus the paucity of such templates for repair of chromosomal breaks. In addition, we find evidence for the involvement of error-prone DNA synthesis in both homologous and nonhomologous pathways of repair. DNA ligase IV is required for efficient end joining, particularly of blunt ends. In its absence, a secondary end-joining pathway relies more heavily on microhomologies in producing deletions.


Genetics | 2013

Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins.

Seung Woo Cho; Jihyun Lee; Dana Carroll; Jin-Soo Kim; Junho Lee

We present a novel method of targeted gene disruption that involves direct injection of recombinant Cas9 protein complexed with guide RNA into the gonad of the nematode Caenorhabditis elegans. Biallelic mutants were recovered among the F1 progeny, demonstrating the high efficiency of this method.


Nature Protocols | 2006

Design, construction and in vitro testing of zinc finger nucleases

Dana Carroll; Jason Morton; Kelly J. Beumer; David J. Segal

Zinc finger nucleases (ZFNs) are hybrid proteins that have been developed as targetable cleavage reagents for double-stranded DNA, both in vitro and in vivo. This protocol describes the design and construction of new DNA-binding domains comprised of zinc fingers (ZFs) directed at selected DNA sequences. Because the ZFNs must dimerize to cut DNA, they are designed in pairs for any new site. The first step is choosing a DNA segment of interest and searching it for sequences that can be recognized by combinations of existing ZFs. The second step is the construction of coding sequences for the selected ZF sets. Third, these coding sequences are linked to that of the nonspecific cleavage domain from the FokI restriction endonuclease in a cloning vector of choice. Finally, the ZFNs are expressed in Escherichia coli, partially purified, and tested in vitro for cleavage of the target sequences to which they were designed. If all goes smoothly, design, construction and cloning can be completed in about two weeks, with expression and testing completed in one additional week.

Collaboration


Dive into the Dana Carroll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald B. Kohn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Segal

University of California

View shared research outputs
Top Co-Authors

Avatar

Feng Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jacob E. Corn

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Scharenberg

Seattle Children's Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge