Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danesh H. Sopariwala is active.

Publication


Featured researches published by Danesh H. Sopariwala.


Nature Medicine | 2012

Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals

Naresh C. Bal; Santosh K. Maurya; Danesh H. Sopariwala; Sanjaya K. Sahoo; Subash C. Gupta; Sana Shaikh; Meghna Pant; Leslie A. Rowland; Eric Bombardier; Sanjeewa A. Goonasekera; A. Russell Tupling; Jeffery D. Molkentin; Muthu Periasamy

The role of skeletal muscle in nonshivering thermogenesis (NST) is not well understood. Here we show that sarcolipin (Sln), a newly identified regulator of the sarco/endoplasmic reticulum Ca2+-ATPase (Serca) pump, is necessary for muscle-based thermogenesis. When challenged to acute cold (4 °C), Sln−/− mice were not able to maintain their core body temperature (37 °C) and developed hypothermia. Surgical ablation of brown adipose tissue and functional knockdown of Ucp1 allowed us to highlight the role of muscle in NST. Overexpression of Sln in the Sln-null background fully restored muscle-based thermogenesis, suggesting that Sln is the basis for Serca-mediated heat production. We show that ryanodine receptor 1 (Ryr1)-mediated Ca2+ leak is an important mechanism for Serca-activated heat generation. Here we present data to suggest that Sln can continue to interact with Serca in the presence of Ca2+, which can promote uncoupling of the Serca pump and cause futile cycling. We further show that loss of Sln predisposes mice to diet-induced obesity, which suggests that Sln-mediated NST is recruited during metabolic overload. These data collectively suggest that SLN is an important mediator of muscle thermogenesis and whole-body energy metabolism.


Journal of Biological Chemistry | 2015

Sarcolipin Is a Key Determinant of the Basal Metabolic Rate, and Its Overexpression Enhances Energy Expenditure and Resistance against Diet-induced Obesity

Santosh K. Maurya; Naresh C. Bal; Danesh H. Sopariwala; Meghna Pant; Leslie A. Rowland; Sana Shaikh; Muthu Periasamy

Background: Sarcolipin (SLN), a regulator of SR Ca2+ ATPase (SERCA) in muscle, can promote the uncoupling of SERCA from Ca2+ transport and increase heat production. Results: Overexpression of SLN in muscle increases energy expenditure and provides resistance against diet-induced obesity. Conclusion: SLN plays a role in whole-body metabolism. Significance: SLN can serve as novel target to increase energy expenditure in muscle. Sarcolipin (SLN) is a novel regulator of sarcoplasmic reticulum Ca2+ ATPase (SERCA) in muscle. SLN binding to SERCA uncouples Ca2+ transport from ATP hydrolysis. By this mechanism, SLN promotes the futile cycling of SERCA, contributing to muscle heat production. We recently showed that SLN plays an important role in cold- and diet-induced thermogenesis. However, the detailed mechanism of how SLN regulates muscle metabolism remains unclear. In this study, we used both SLN knockout (Sln−/−) and skeletal muscle-specific SLN overexpression (SlnOE) mice to explore energy metabolism by pair feeding (fixed calories) and high-fat diet feeding (ad libitum). Our results show that, upon pair feeding, SlnOE mice lost weight compared with the WT, but Sln−/− mice gained weight. Interestingly, when fed with a high-fat diet, SlnOE mice consumed more calories but gained less weight and maintained a normal metabolic profile in comparison with WT and Sln−/− mice. We found that oxygen consumption and fatty acid oxidation were increased markedly in SlnOE mice. There was also an increase in both mitochondrial number and size in SlnOE muscle, together with increased expression of peroxisome proliferator-activated receptor δ (PPARδ) and PPAR γ coactivator 1 α (PGC1α), key transcriptional activators of mitochondrial biogenesis and enzymes involved in oxidative metabolism. These results, taken together, establish an important role for SLN in muscle metabolism and energy expenditure. On the basis of these data we propose that SLN is a novel target for enhancing whole-body energy expenditure.


Journal of Biological Chemistry | 2013

Sarcolipin Protein Interaction with Sarco(endo)plasmic Reticulum Ca2+ATPase (SERCA) Is Distinct from Phospholamban Protein, and Only Sarcolipin Can Promote Uncoupling of the SERCA Pump

Sanjaya K. Sahoo; Sana Shaikh; Danesh H. Sopariwala; Naresh C. Bal; Muthu Periasamy

Background: Sarcolipin and phospholamban, the regulators of SERCA, are differentially expressed in muscle. Results: Only sarcolipin binds to SERCA in the presence of Ca2+ and interacts with SERCA throughout the kinetic cycle. Conclusion: Sarcolipin alone promotes uncoupling of the SERCA pump leading to increased heat production. Significance: Sarcolipin-mediated regulation of SERCA plays an important role in muscle-based thermogenesis. Sarco(endo)plasmic reticulum Ca2+ATPase (SERCA) pump activity is modulated by phospholamban (PLB) and sarcolipin (SLN) in cardiac and skeletal muscle. Recent data suggest that SLN could play a role in muscle thermogenesis by promoting uncoupling of the SERCA pump (Lee, A.G. (2002) Curr. Opin. Struct. Biol. 12, 547–554 and Bal, N. C., Maurya, S. K., Sopariwala, D. H., Sahoo, S. K., Gupta, S. C., Shaikh, S. A., Pant, M., Rowland, L. A., Bombardier, E., Goonasekera, S. A., Tupling, A. R., Molkentin, J. D., and Periasamy, M. (2012) Nat. Med. 18, 1575–1579), but the mechanistic details are unknown. To better define how binding of SLN to SERCA promotes uncoupling of SERCA, we compared SLN and SERCA1 interaction with that of PLB in detail. The homo-bifunctional cross-linker (1,6-bismaleimidohexane) was employed to detect dynamic protein interaction during the SERCA cycle. Our studies reveal that SLN differs significantly from PLB: 1) SLN primarily affects the Vmax of SERCA-mediated Ca2+ uptake but not the pump affinity for Ca2+; 2) SLN can bind to SERCA in the presence of high Ca2+, but PLB can only interact to the ATP-bound Ca2+-free E2 state; and 3) unlike PLB, SLN interacts with SERCA throughout the kinetic cycle and promotes uncoupling of the SERCA pump. Using SERCA transmembrane mutants, we additionally show that PLB and SLN can bind to the same groove but interact with a different set of residues on SERCA. These data collectively suggest that SLN is functionally distinct from PLB; its ability to interact with SERCA in the presence of Ca2+ causes uncoupling of the SERCA pump and increased heat production.


Journal of Applied Physiology | 2015

Sarcolipin overexpression improves muscle energetics and reduces fatigue.

Danesh H. Sopariwala; Meghna Pant; Sana Shaikh; Sanjeewa A. Goonasekera; Jeffery D. Molkentin; Noah Weisleder; Jianjie Ma; Zui Pan; Muthu Periasamy

Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (Sln(OE)) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln(OE) mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln(OE) EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln(OE) EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln(OE) EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln(OE) mice fatigued significantly less than WT muscles. Interestingly, Sln(OE) muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln(OE) EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln(OE) compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics.


Journal of Biological Chemistry | 2015

The N Terminus of Sarcolipin Plays an Important Role in Uncoupling Sarco-endoplasmic Reticulum Ca2+-ATPase (SERCA) ATP Hydrolysis from Ca2+ Transport.

Sanjaya K. Sahoo; Sana Shaikh; Danesh H. Sopariwala; Naresh C. Bal; Dennis Skjøth Bruhn; Wojciech Kopec; Himanshu Khandelia; Muthu Periasamy

Background: Both phospholamban (PLB) and sarcolipin (SLN) regulate SERCA activity, however, only SLN uncouples SERCA. Results: The N and C termini of SLN, or the N terminus and transmembrane region of PLB, confer protein-specific function. Conclusion: SLN N terminus plays a role in dynamic interaction and uncoupling of SERCA. Significance: SERCA uncoupling by SLN increases heat production implicating SLN-SERCA interaction in muscle thermogenesis. The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is responsible for intracellular Ca2+ homeostasis. SERCA activity in muscle can be regulated by phospholamban (PLB), an affinity modulator, and sarcolipin (SLN), an uncoupler. Although PLB gets dislodged from Ca2+-bound SERCA, SLN continues to bind SERCA throughout its kinetic cycle and promotes uncoupling of Ca2+ transport from ATP hydrolysis. To determine the structural regions of SLN that mediate uncoupling of SERCA, we employed mutagenesis and generated chimeras of PLB and SLN. In this study we demonstrate that deletion of SLN N-terminal residues 2ERSTQ leads to loss of the uncoupling function even though the truncated peptide can target and constitutively bind SERCA. Furthermore, molecular dynamics simulations of SLN and SERCA interaction showed a rearrangement of SERCA residues that is altered when the SLN N terminus is deleted. Interestingly, transfer of the PLB cytosolic domain to the SLN transmembrane (TM) and luminal tail causes the chimeric protein to lose SLN-like function. Further introduction of the PLB TM region into this chimera resulted in conversion to full PLB-like function. We also found that swapping PLB N and C termini with those from SLN caused the resulting chimera to acquire SLN-like function. Swapping the C terminus alone was not sufficient for this conversion. These results suggest that domains can be switched between SLN and PLB without losing the ability to regulate SERCA activity; however, the resulting chimeras acquire functions different from the parent molecules. Importantly, our studies highlight that the N termini of SLN and PLB influence their respective unique functions.


PLOS ONE | 2015

Metabolic Dysfunction and Altered Mitochondrial Dynamics in the Utrophin-Dystrophin Deficient Mouse Model of Duchenne Muscular Dystrophy

Meghna Pant; Danesh H. Sopariwala; Naresh C. Bal; Jeovanna Lowe; Dawn A. Delfín; Jill A. Rafael-Fortney; Muthu Periasamy

The utrophin-dystrophin deficient (DKO) mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD). However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL) muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1) and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.


Biochemical Journal | 2011

Probing cationic selectivity of cardiac calsequestrin and its CPVT mutants.

Naresh C. Bal; Nivedita Jena; Danesh H. Sopariwala; Tuniki Balaraju; Sana Shaikh; Chandralata Bal; Ashoke Sharon; Sandor Gyorke; Muthu Periasamy

CASQ (calsequestrin) is a Ca2+-buffering protein localized in the muscle SR (sarcoplasmic reticulum); however, it is unknown whether Ca2+ binding to CASQ2 is due to its location inside the SR rich in Ca2+ or due to its preference for Ca2+ over other ions. Therefore a major aim of the present study was to determine how CASQ2 selects Ca2+ over other metal ions by studying monomer folding and subsequent aggregation upon exposure to alkali (monovalent), alkaline earth (divalent) and transition (polyvalent) metals. We additionally investigated how CPVT (catecholaminergic polymorphic ventricular tachycardia) mutations affect CASQ2 structure and its molecular behaviour when exposed to different metal ions. Our results show that alkali and alkaline earth metals can initiate similar molecular compaction (folding), but only Ca2+ can promote CASQ2 to aggregate, suggesting that CASQ2 has a preferential binding to Ca2+ over all other metals. We additionally found that transition metals (having higher co-ordinated bonding ability than Ca2+) can also initiate folding and promote aggregation of CASQ2. These studies led us to suggest that folding and formation of higher-order structures depends on cationic properties such as co-ordinate bonding ability and ionic radius. Among the CPVT mutants studied, the L167H mutation disrupts the Ca2+-dependent folding and, when folding is achieved by Mn2+, L167H can undergo aggregation in a Ca2+-dependent manner. Interestingly, domain III mutants (D307H and P308L) lost their selectivity to Ca2+ and could be aggregated in the presence of Mg2+. In conclusion, these studies suggest that CPVT mutations modify CASQ2 behaviour, including folding, aggregation/polymerization and selectivity towards Ca2+.


The Journal of Physiology | 2014

Malignant hyperthermia: to buffer or not to buffer

Meghna Pant; Danesh H. Sopariwala; Naresh C. Bal

Malignant hyperthermia (MH) is a clinical condition characterized by a massive rise in body temperature as a result of increased metabolism that can lead to death if not treated. MH cases reported so far suggest that skeletal muscle is the site of heat production. The majority of the heat generated during this event can potentially come from the two main ATP-consuming molecules in the skeletal muscle: myosin ATPase and sarco(endo)plasmic reticulum calcium ATPase (SERCA). Muscle as a source of endothermic heat production in a non-shivering manner has been proposed by several groups of researchers since the 1920s. Even a century later, the mechanism behind muscle-based non-shivering heat production remains elusive. In a recent issue of Journal of Physiology, Manno et al. (2013) studied the role of abnormal calcium dynamics in a mouse model of MH. We read this paper with great interest as it shed some light on the plausible mechanism behind muscle-based heat production. Most of the MH episodes result primarily due to mutations in ryanodine receptor 1 (RYR1). These RYR1 mutations make the mouse model susceptible to volatile anaesthetics and/or heat-induced calcium release, thus causing uncontrolled heat production from myosin ATPase and continuous SERCA cycling. Dantrolene, which inhibits this leak from RYR1, is currently used for the treatment of MH. To study the mechanism behind heat-induced or anaesthesia-induced MH, Chelu et al. (2006) created a mouse model susceptible to MH harbouring the Y524S mutation in RYR1 (YS mice). The Y524S mutation in mice is equivalent to the Y522S mutation in human. The mice homozygous for the mutation fail to survive but the heterozygous mice exhibit elevated temperature and whole body contractures in response to isoflurane and heat. In their paper, Manno et al. (2013) employ imaging techniques to measure cytosolic and sarcoplasmic reticulum (SR) calcium concentration [Ca2+] in the YS mutant cells. They demonstrate that although the SR release flux is similar, SR [Ca2+] buffering and SR membrane permeability are drastically altered in the MH mutant mice.


Journal of Smooth Muscle Research | 2011

SM2^ male mice are predisposed to develop urinary tract obstruction and hyper contractility of the bladder smooth muscle upon ageing

Mei Chi; Yingbi Zhou; Danesh H. Sopariwala; Muthu Periasamy


Nature Medicine | 2012

Corrigendum: Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals

Naresh C. Bal; Santosh K. Maurya; Danesh H. Sopariwala; Sanjaya K. Sahoo; Subash C. Gupta; Sana Shaikh; Meghna Pant; Leslie A. Rowland; Sanjeewa A. Goonasekera; Jeffery D. Molkentin; Muthu Periasamy

Collaboration


Dive into the Danesh H. Sopariwala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffery D. Molkentin

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Santosh K. Maurya

Sanford-Burnham Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge