Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dani Dumitriu is active.

Publication


Featured researches published by Dani Dumitriu.


Trends in Neurosciences | 2010

The Addicted Synapse: Mechanisms of Synaptic and Structural Plasticity in Nucleus Accumbens

Scott J. Russo; David M. Dietz; Dani Dumitriu; John H. Morrison; Robert C. Malenka; Eric J. Nestler

Addictive drugs cause persistent restructuring of several neuronal cell types in the limbic regions of brain thought to be responsible for long-term behavioral plasticity driving addiction. Although these structural changes are well documented in nucleus accumbens medium spiny neurons, little is known regarding the underlying molecular mechanisms. Additionally, it remains unclear whether structural plasticity and its synaptic concomitants drive addictive behaviors or whether they reflect homeostatic compensations to the drug not related to addiction per se. Here, we discuss recent paradoxical data, which either support or oppose the hypothesis that drug-induced changes in dendritic spines drive addictive behavior. We define areas where future investigation can provide a more detailed picture of drug-induced synaptic reorganization, including ultrastructural, electrophysiological and behavioral studies.


Nature Neuroscience | 2010

Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens

Quincey LaPlant; Vincent Vialou; Herbert E. Covington; Dani Dumitriu; Jian Feng; Brandon L. Warren; Ian Maze; David M. Dietz; Emily L. Watts; Sergio D. Iñiguez; Ja Wook Koo; Ezekiell Mouzon; William Renthal; Fiona Hollis; Hui Wang; Michele A. Noonan; Yanhua Ren; Amelia J. Eisch; Carlos A. Bolaños; Mohamed Kabbaj; Guanghua Xiao; Rachael L. Neve; Yasmin L. Hurd; Ronald S. Oosting; Gouping Fan; John H. Morrison; Eric J. Nestler

Despite abundant expression of DNA methyltransferases (Dnmts) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We found that Dnmt3a expression was regulated in mouse nucleus accumbens (NAc) by chronic cocaine use and chronic social defeat stress. Moreover, NAc-specific manipulations that block DNA methylation potentiated cocaine reward and exerted antidepressant-like effects, whereas NAc-specific Dnmt3a overexpression attenuated cocaine reward and was pro-depressant. On a cellular level, we found that chronic cocaine use selectively increased thin dendritic spines on NAc neurons and that DNA methylation was both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli.


The Journal of Neuroscience | 2010

Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment.

Dani Dumitriu; Jiandong Hao; Yuko Hara; Jeffrey Kaufmann; William G.M. Janssen; Wendy Lou; Peter R. Rapp; John H. Morrison

Age-associated memory impairment (AAMI) occurs in many mammalian species, including humans. In contrast to Alzheimers disease (AD), in which circuit disruption occurs through neuron death, AAMI is due to circuit and synapse disruption in the absence of significant neuron loss and thus may be more amenable to prevention or treatment. We have investigated the effects of aging on pyramidal neurons and synapse density in layer III of area 46 in dorsolateral prefrontal cortex of young and aged, male and female rhesus monkeys (Macaca mulatta) that were tested for cognitive status through the delayed non-matching-to-sample (DNMS) and delayed response tasks. Cognitive tests revealed an age-related decrement in both acquisition and performance on DNMS. Our morphometric analyses revealed both an age-related loss of spines (33%, p < 0.05) on pyramidal cells and decreased density of axospinous synapses (32%, p < 0.01) in layer III of area 46. In addition, there was an age-related shift in the distribution of spine types reflecting a selective vulnerability of small, thin spines, thought to be particularly plastic and linked to learning. While both synapse density and the overall spine size average of an animal were predictive of number of trials required for acquisition of DNMS (i.e., learning the task), the strongest correlate of behavior was found to be the head volume of thin spines, with no correlation between behavior and mushroom spine size or density. No synaptic index correlated with memory performance once the task was learned.


The Journal of Neuroscience | 2011

IκB Kinase Regulates Social Defeat Stress-Induced Synaptic and Behavioral Plasticity

Daniel J. Christoffel; Sam A. Golden; Dani Dumitriu; Alfred J. Robison; William G.M. Janssen; H. Francisca Ahn; Vaishnav Krishnan; Cindy M. Reyes; Ming-Hu Han; Jessica L. Ables; Amelia J. Eisch; David M. Dietz; Deveroux Ferguson; Rachael L. Neve; Paul Greengard; Yong Kim; John H. Morrison; Scott J. Russo

The neurobiological underpinnings of mood and anxiety disorders have been linked to the nucleus accumbens (NAc), a region important in processing the rewarding and emotional salience of stimuli. Using chronic social defeat stress, an animal model of mood and anxiety disorders, we investigated whether alterations in synaptic plasticity are responsible for the long-lasting behavioral symptoms induced by this form of stress. We hypothesized that chronic social defeat stress alters synaptic strength or connectivity of medium spiny neurons (MSNs) in the NAc to induce social avoidance. To test this, we analyzed the synaptic profile of MSNs via confocal imaging of Lucifer-yellow-filled cells, ultrastructural analysis of the postsynaptic density, and electrophysiological recordings of miniature EPSCs (mEPSCs) in mice after social defeat. We found that NAc MSNs have more stubby spine structures with smaller postsynaptic densities and an increase in the frequency of mEPSCs after social defeat. In parallel to these structural changes, we observed significant increases in IκB kinase (IKK) in the NAc after social defeat, a molecular pathway that has been shown to regulate neuronal morphology. Indeed, we find using viral-mediated gene transfer of dominant-negative and constitutively active IKK mutants that activation of IKK signaling pathways during social defeat is both necessary and sufficient to induce synaptic alterations and behavioral effects of the stress. These studies establish a causal role for IKK in regulating stress-induced adaptive plasticity and may present a novel target for drug development in the treatment of mood and anxiety disorders in humans.


Nature Protocols | 2011

High-throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy

Dani Dumitriu; Alfredo Rodriguez; John H. Morrison

Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high-resolution confocal microscopy, deconvolution and image analysis with NeuronStudio. Recent technical advancements include better preservation of tissue, resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically to identify both optimal resolution and the highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing three experimental groups with eight subjects each can take as little as 1 month if optimized for speed, or approximately 4–5 months if the highest resolution and morphometric detail is sought.


The Journal of Neuroscience | 2012

Subregional, dendritic compartment, and spine subtype specificity in cocaine-regulation of dendritic spines in the nucleus accumbens

Dani Dumitriu; Quincey LaPlant; Yael S. Grossman; Caroline Dias; William G.M. Janssen; Scott J. Russo; John H. Morrison; Eric J. Nestler

Numerous studies have found that chronic cocaine increases dendritic spine density of medium spiny neurons in the nucleus accumbens (NAc). Here, we used single-cell microinjections and advanced 3D imaging and analysis techniques to extend these findings in several important ways: by assessing cocaine regulation of dendritic spines in the core versus shell subregions of NAc in the mouse, over a broad time course (4 h, 24 h, or 28 d) of withdrawal from chronic cocaine, and with a particular focus on proximal versus distal dendrites. Our data demonstrate subregion-specific, and in some cases opposite, regulation of spines by cocaine on proximal but not distal dendrites. Notably, all observed density changes were attributable to selective regulation of thin spines. At 4 h after injection, the proximal spine density is unchanged in the core but significantly increased in the shell. At 24 h, the density of proximal dendritic spines is reduced in the core but increased in the shell. Such downregulation of thin spines in the core persists through 28 d of withdrawal, whereas the spine density in the shell returns to baseline levels. Consistent with previous results, dendritic tips exhibited upregulation of dendritic spines after 24 h of withdrawal, an effect localized to the shell. The divergence in regulation of proximal spine density in NAc core versus shell by cocaine correlates with recently reported electrophysiological data from a similar drug administration regimen and might represent a key mediator of changes in the reward circuit that drive aspects of addiction.


Annals of the New York Academy of Sciences | 2010

Estrogen and the aging brain: an elixir for the weary cortical network

Dani Dumitriu; Peter R. Rapp; Bruce S. McEwen; John H. Morrison

The surprising discovery in 1990 that estrogen modulates hippocampal structural plasticity launched a whole new field of scientific inquiry. Over the past two decades, estrogen‐induced spinogenesis has been described in several brain areas involved in cognition in a number of species, in both sexes and on multiple time scales. Exploration into the interaction between estrogen and aging has illuminated some of the hormones neuroprotective effects, most notably on age‐related cognitive decline in nonhuman primates. Although there is still much to be learned about the mechanisms by which estrogen exerts its actions, key components of the signal transduction pathways are beginning to be elucidated and nongenomic actions via membrane bound estrogen receptors are of particular interest. Future studies are focused on identifying the most clinically relevant hormone treatment, as well as the potential identification of new therapeutics that can prevent or reverse age‐related cognitive impairment by intercepting specific signal transduction pathways initiated by estrogen.


Neuroscience | 2011

Interactive Effects of Age and Estrogen on Cortical Neurons: Implications for Cognitive Aging

Megan Bailey; Athena Ching-Jung Wang; Jiandong Hao; William G.M. Janssen; Yuko Hara; Dani Dumitriu; Patrick R. Hof; John H. Morrison

In the past few decades it has become clear that estrogen signaling plays a much larger role in modulating the cognitive centers of the brain than previously thought possible. We have developed a nonhuman primate (NHP) model to investigate the relationships between estradiol (E) and cognitive aging. Our studies of cyclical E treatment in ovariectomized (OVX) young and aged rhesus monkeys have revealed compelling cognitive and synaptic effects of E in the context of aging. Delayed response (DR), a task that is particularly dependent on integrity of dorsolateral prefrontal cortex (dlPFC) area 46 revealed the following: (1) that young OVX rhesus monkeys perform equally well whether treated with E or vehicle (V), and (2) that aged OVX animals given E perform as well as young adults with or without E, whereas OVX V-treated aged animals display significant DR impairment. We have analyzed the structure of layer III pyramidal cells in area 46 in these same monkeys. We found both age and treatment effects on these neurons that are consistent with behavioral data. Briefly, reconstructions of pyramidal neurons in area 46 from these monkeys showed that cyclical E increased the density of small, thin spines in both young and aged monkeys. However, this effect of E was against a background of age-related loss of small, thin spines, leaving aged V-treated monkeys with a particularly low density of these highly plastic spines, and vulnerable to cognitive decline. Our current interpretation is that E not only plays a critically important role in maintaining spine number, but also enables synaptic plasticity through a cyclical increase in small highly plastic spines that may be stabilized in the context of learning. Interestingly, recent studies demonstrate that chronic E is less effective at inducing spinogenesis than cyclical E. We have begun to link certain molecular attributes of excitatory synapses in area 46 to E effects and cognitive performance in these monkeys. Given the importance of synaptic estrogen receptor α (ER-α) in rat hippocampus, we focused our initial studies on synaptic ER-α in area 46. Three key findings have emerged from these studies: (1) synaptic ER-α is present in axospinous synapses in area 46; (2) it is stable across treatment and age groups (which is not the case in rat hippocampus); and (3) the abundance and distribution of synaptic ER-α is a key correlate of individual variation in cognitive performance in certain age and treatment groups. These findings have important implications for the design of hormone treatment strategies for both surgically and naturally menopausal women. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering

Ana C. Pereira; Hilary K. Lambert; Yael S. Grossman; Dani Dumitriu; Rachel Waldman; Katina Calakos; William G.M. Janssen; Bruce S. McEwen; John H. Morrison

Significance Aging is often accompanied by cognitive decline. It is of critical importance to understand the synaptic susceptibilities of the glutamatergic neural circuits to age-related cognitive decline and to intervene in this process. Maintenance of synaptic health in the face of aging is a crucially important therapeutic goal. We show that the glutamate modulator, riluzole, prevents age-related memory loss and induces clustering of dendritic spines. Clustering is a critical element of synaptic plasticity that has been previously demonstrated to increase synaptic strength. This study further elucidates neuroplastic changes in the neurocircuits vulnerable to aging and advances therapeutic development to prevent and treat age-related cognitive decline. The dementia of Alzheimer’s disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline.


The Journal of Neuroscience | 2009

Requirement for Protein Synthesis at Developing Synapses

Joseph Sebeo; Kuangfu Hsiao; Ozlem Bozdagi; Dani Dumitriu; Yongchao Ge; Qiang Zhou; Deanna L. Benson

Activity and protein synthesis act cooperatively to generate persistent changes in synaptic responses. This forms the basis for enduring memory in adults. Activity also shapes neural circuits developmentally, but whether protein synthesis plays a congruent function in this process is poorly understood. Here, we show that brief periods of global or local protein synthesis inhibition decrease the synaptic vesicles available for fusion and increase synapse elimination. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a critical target; its levels are controlled by rapid turnover, and blocking its activity or knocking it down recapitulates the effects of protein synthesis inhibition. Mature presynaptic terminals show decreased sensitivity to protein synthesis inhibition, and resistance coincides with a developmental switch in regulation from CaMKII to PKA (protein kinase A). These findings demonstrate a novel mechanism regulating presynaptic activity and synapse elimination during development, and suggest that protein translation acts coordinately with activity to selectively stabilize appropriate synaptic interactions.

Collaboration


Dive into the Dani Dumitriu's collaboration.

Top Co-Authors

Avatar

John H. Morrison

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

William G.M. Janssen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Yael S. Grossman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Peter R. Rapp

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Scott J. Russo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuko Hara

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Amelia J. Eisch

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge