Dani Martínez
University of Lleida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dani Martínez.
Sensors | 2014
Davinia Font; Tomàs Pallejà; Marcel Tresanchez; David Runcan; Javier Moreno; Dani Martínez; Mercè Teixidó; Jordi Palacín
This paper proposes the development of an automatic fruit harvesting system by combining a low cost stereovision camera and a robotic arm placed in the gripper tool. The stereovision camera is used to estimate the size, distance and position of the fruits whereas the robotic arm is used to mechanically pickup the fruits. The low cost stereovision system has been tested in laboratory conditions with a reference small object, an apple and a pear at 10 different intermediate distances from the camera. The average distance error was from 4% to 5%, and the average diameter error was up to 30% in the case of a small object and in a range from 2% to 6% in the case of a pear and an apple. The stereovision system has been attached to the gripper tool in order to obtain relative distance, orientation and size of the fruit. The harvesting stage requires the initial fruit location, the computation of the inverse kinematics of the robotic arm in order to place the gripper tool in front of the fruit, and a final pickup approach by iteratively adjusting the vertical and horizontal position of the gripper tool in a closed visual loop. The complete system has been tested in controlled laboratory conditions with uniform illumination applied to the fruits. As a future work, this system will be tested and improved in conventional outdoor farming conditions.
Sensors | 2015
Davinia Font; Marcel Tresanchez; Dani Martínez; Javier Moreno; Eduard Clotet; Jordi Palacín
This paper presents a method for vineyard yield estimation based on the analysis of high-resolution images obtained with artificial illumination at night. First, this paper assesses different pixel-based segmentation methods in order to detect reddish grapes: threshold based, Mahalanobis distance, Bayesian classifier, linear color model segmentation and histogram segmentation, in order to obtain the best estimation of the area of the clusters of grapes in this illumination conditions. The color spaces tested were the original RGB and the Hue-Saturation-Value (HSV). The best segmentation method in the case of a non-occluded reddish table-grape variety was the threshold segmentation applied to the H layer, with an estimation error in the area of 13.55%, improved up to 10.01% by morphological filtering. Secondly, after segmentation, two procedures for yield estimation based on a previous calibration procedure have been proposed: (1) the number of pixels corresponding to a cluster of grapes is computed and converted directly into a yield estimate; and (2) the area of a cluster of grapes is converted into a volume by means of a solid of revolution, and this volume is converted into a yield estimate; the yield errors obtained were 16% and −17%, respectively.
Sensors | 2016
Eduard Clotet; Dani Martínez; Javier Moreno; Marcel Tresanchez; Jordi Palacín
This paper presents the technical description, mechanical design, electronic components, software implementation and possible applications of a tele-operated mobile robot designed as an assisted living tool. This robotic concept has been named Assistant Personal Robot (or APR for short) and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility. The APR features a fast high-mobility motion system adapted for tele-operation in plain indoor areas, which incorporates a high-priority collision avoidance procedure. This paper presents the mechanical architecture, electrical fundaments and software implementation required in order to develop the main functionalities of an assistive robot. The APR uses a tablet in order to implement the basic peer-to-peer videoconference and tele-operation control combined with a tactile graphic user interface. The paper also presents the development of some applications proposed in the framework of an assisted living robot.
Sensors | 2014
Dani Martínez; Mercè Teixidó; Davinia Font; Javier Moreno; Marcel Tresanchez; S. Marco; Jordi Palacín
This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.
Journal of Sensors | 2016
Dani Martínez; Javier Moreno; Marcel Tresanchez; Eduard Clotet; Juan Manuel Jiménez-Soto; Rudys Magrans; Antonio Pardo; S. Marco; Jordi Palacín
This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.
Sensors | 2016
Javier Moreno; Eduard Clotet; Ruben Lupiañez; Marcel Tresanchez; Dani Martínez; Tomàs Pallejà; Jordi Casanovas; Jordi Palacín
This paper presents the design, implementation and validation of the three-wheel holonomic motion system of a mobile robot designed to operate in homes. The holonomic motion system is described in terms of mechanical design and electronic control. The paper analyzes the kinematics of the motion system and validates the estimation of the trajectory comparing the displacement estimated with the internal odometry of the motors and the displacement estimated with a SLAM procedure based on LIDAR information. Results obtained in different experiments have shown a difference on less than 30 mm between the position estimated with the SLAM and odometry, and a difference in the angular orientation of the mobile robot lower than 5° in absolute displacements up to 1000 mm.
practical applications of agents and multi agent systems | 2014
Dani Martínez; Tomàs Pallejà; Javier Moreno; Marcel Tresanchez; Mercè Teixidó; Davinia Font; Antonio Pardo; S. Marco; Jordi Palacín
This paper presents an autonomous agent for gas leak source detection. The main objective of the robot is to estimate the localization of the gas leak source in an indoor environment without any human intervention. The agent implements an SLAM procedure to scan and map the indoor area. The mobile robot samples gas concentrations with a gas and a wind sensor in order to estimate the source of the gas leak. The mobile robot agent will use the information obtained from the onboard sensors in order to define an efficient scanning path. This paper describes the measurement results obtained in a long corridor with a gas leak source placed close to a wall.
ISAmI | 2015
Eduard Clotet; Dani Martínez; Javier Moreno; Marcel Tresanchez; Jordi Palacín
This paper presents the development of an Assistant Personal Robotic (APR) designed with the objective of creating a high reliable robot that can be used in several home applications such as: home safety, elder people supervision and remote assistance, remote presence, etc. In this proposal the APR is remotely controlled by a smartphone or portable tablet with Wi-Fi connectivity. The APR design has taken into consideration safety factors, mobility and physical restrictions of an average home; including opened doors, tight turns, and narrow corridors. The APR design includes several onboard sensors in order to protect the robot and avoid collisions with fixed or moving surrounding objects.
international conference on advanced robotics | 2015
Dani Martínez; Eduard Clotet; Marcel Tresanchez; Javier Moreno; Juan Manuel Jiménez-Soto; Rudys Magrans; S. Marco; Jordi Palacín
This paper presents the preliminary characterization results of a custom wind tunnel for designed for performing experiments on locating a volatile gas source with a mobile robot. Such experiments require a previous characterization of the wind tunnel as well as the definition of the configurable agents which are present during the experiments. This paper presents the experimental data gathered from the real environments. This paper shows the behavior of the evolution and diffusion of the gas depending on the gas injection rate, the mobile robot position, and the wind force. The mobile robot is equipped with a LIDAR for self localization, with a photo ionization detector (PID) for gas measurement, and with an anemometer for wind measurement. This paper shows the results obtained in static and dynamic experiments.
distributed computing and artificial intelligence | 2013
Dani Martínez; Javier Moreno; Davinia Font; Marcel Tresanchez; Tomàs Pallejà; Mercè Teixidó; Jordi Palacín
This paper proposes a practical methodology to implement a mobile robot agent based on a Google Android Smartphone. The main computational unit of the robot agent is a Smartphone connected through USB to a control motor board that drives two motors and one stick. The agent program structure is implemented using multi-threading methods with shared memory instances. The agent uses the Smartphone camera to obtain images and to apply image processing algorithms in order to obtain profitable information of its environment. Moreover, the robot can use the sensors embedded in the Smartphone to gather more information of the environment. This paper describes the methodology used and the advantages of developing a robot agent based on a Smartphone.