Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Bachovchin is active.

Publication


Featured researches published by Daniel A. Bachovchin.


Nature | 2010

Quantitative reactivity profiling predicts functional cysteines in proteomes

Eranthie Weerapana; Chu Wang; Gabriel M. Simon; Florian Richter; Sagar D. Khare; Myles B. D. Dillon; Daniel A. Bachovchin; Kerri A. Mowen; David Baker; Benjamin F. Cravatt

Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs.


Nature Biotechnology | 2009

Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes

Daniel A. Bachovchin; Steven J. Brown; Hugh Rosen; Benjamin F. Cravatt

High-throughput screening to discover small-molecule modulators of enzymes typically relies on highly tailored substrate assays, which are not available for poorly characterized enzymes. Here we report a general, substrate-free method for identifying inhibitors of uncharacterized enzymes. The assay measures changes in the kinetics of covalent active-site labeling with broad-spectrum, fluorescent probes in the presence of inhibitors by monitoring the fluorescence polarization signal. We show that this technology is applicable to enzymes from at least two mechanistic classes, regardless of their degree of functional annotation, and can be coupled with secondary proteomic assays that use competitive activity-based profiling to rapidly determine the specificity of screening hits. Using this method, we identify the bioactive alkaloid emetine as a selective inhibitor of the uncharacterized cancer-associated hydrolase RBBP9. Furthermore, we show that the detoxification enzyme GSTO1, also implicated in cancer, is inhibited by several electrophilic compounds found in public libraries, some of which display high selectivity for this protein.Target-based high-throughput screening (HTS) is essential for the discovery of small-molecule modulators of proteins. Typical screening methods for enzymes rely on extensively tailored substrate assays, which are not available for targets of poorly characterized biochemical activity. Here, we report a general, substrate-free platform for HTS that overcomes this problem by monitoring the reaction of broad-spectrum, activity-based probes with enzymes using fluorescence polarization. We show that this platform is applicable to enzymes from multiple mechanistic classes, regardless of their degree of functional annotation, and can be coupled with secondary competitive activity-based proteomic assays to rapidly determine the specificity of screening hits. Using this platform, we identified the bioactive alkaloid emetine as a selective inhibitor of the uncharacterized cancer-associated hydrolase RBBP9. We furthermore show that the detoxification enzyme GSTO1, also implicated in cancer, is inhibited by several electrophilic compounds found in public libraries, some of which display high selectivity for this enzyme.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening

Daniel A. Bachovchin; Tianyang Ji; Weiwei Li; Gabriel M. Simon; Jacqueline L. Blankman; Alexander Adibekian; Heather Hoover; Sherry Niessen; Benjamin F. Cravatt

Serine hydrolases (SHs) are one of the largest and most diverse enzyme classes in mammals. They play fundamental roles in virtually all physiological processes and are targeted by drugs to treat diseases such as diabetes, obesity, and neurodegenerative disorders. Despite this, we lack biological understanding for most of the 110+ predicted mammalian metabolic SHs, in large part because of a dearth of assays to assess their biochemical activities and a lack of selective inhibitors to probe their function in living systems. We show here that the vast majority (> 80%) of mammalian metabolic SHs can be labeled in proteomes by a single, active site-directed fluorophosphonate probe. We exploit this universal activity-based assay in a library-versus-library format to screen 70+ SHs against 140+ structurally diverse carbamates. Lead inhibitors were discovered for ∼40% of the screened enzymes, including many poorly characterized SHs. Global profiles identified carbamate inhibitors that discriminate among highly sequence-related SHs and, conversely, enzymes that share inhibitor sensitivity profiles despite lacking sequence homology. These findings indicate that sequence relatedness is not a strong predictor of shared pharmacology within the SH superfamily. Finally, we show that lead carbamate inhibitors can be optimized into pharmacological probes that inactivate individual SHs with high specificity in vivo.


Nature Chemical Biology | 2011

Click-generated triazole ureas as ultrapotent in vivo–active serine hydrolase inhibitors

Alexander Adibekian; Brent R. Martin; Chu Wang; Ku-Lung Hsu; Daniel A. Bachovchin; Sherry Niessen; Heather Hoover; Benjamin F. Cravatt

Serine hydrolases (SHs) are a diverse enzyme class representing > 1% of all human proteins. The biological functions for most SHs remain poorly characterized due to a lack of selective inhibitors to probe their activity in living systems. Here, we show that a substantial number of SHs can be irreversibly inactivated by 1,2,3-triazole ureas, which exhibit negligible cross-reactivity with other protein classes. Rapid lead optimization by click chemistry-enabled synthesis and competitive activity-based profiling identified 1,2,3-triazole ureas that selectively inhibit enzymes from diverse branches of the SH superfamily, including peptidases (acyl-peptide hydrolase or APEH), lipases (platelet-activating factor acetylhyrolase-2 or PAFAH2), and uncharacterized hydrolases (α, β-hydrolase 11 or ABHD11), with exceptional potency in cells (sub-nM) and mice (< 1 mg/kg). We show that APEH inhibition leads to accumulation of N-acetylated proteins and promotes proliferation in T-cells. These data designate 1,2,3-triazole ureas as a pharmacologically privileged chemotype for SH inhibition that shows broad activity across the SH class coupled with tunable selectivity for individual enzymes.


Nature Reviews Drug Discovery | 2012

The pharmacological landscape and therapeutic potential of serine hydrolases

Daniel A. Bachovchin; Benjamin F. Cravatt

Serine hydrolases perform crucial roles in many biological processes, and several of these enzymes are targets of approved drugs for indications such as type 2 diabetes, Alzheimers disease and infectious diseases. Despite this, most of the human serine hydrolases (of which there are more than 200) remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, in vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds that are under clinical investigation and selective inhibitors emerging from academic probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate will aid in their biological characterization and, in some cases, therapeutic validation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors

Daniel A. Bachovchin; Justin T. Mohr; Anna E Speers; Chu Wang; Jacob M. Berlin; Timothy P. Spicer; Virneliz Fernandez-Vega; Peter Chase; Peter Hodder; Stephan C. Schürer; Daniel K. Nomura; Hugh Rosen; Gregory C. Fu; Benjamin F. Cravatt

National Institutes of Health (NIH)-sponsored screening centers provide academic researchers with a special opportunity to pursue small-molecule probes for protein targets that are outside the current interest of, or beyond the standard technologies employed by, the pharmaceutical industry. Here, we describe the outcome of an inhibitor screen for one such target, the enzyme protein phosphatase methylesterase-1 (PME-1), which regulates the methylesterification state of protein phosphatase 2A (PP2A) and is implicated in cancer and neurodegeneration. Inhibitors of PME-1 have not yet been described, which we attribute, at least in part, to a dearth of substrate assays compatible with high-throughput screening. We show that PME-1 is assayable by fluorescence polarization-activity-based protein profiling (fluopol-ABPP) and use this platform to screen the 300,000+ member NIH small-molecule library. This screen identified an unusual class of compounds, the aza-β-lactams (ABLs), as potent (IC50 values of approximately 10 nM), covalent PME-1 inhibitors. Interestingly, ABLs did not derive from a commercial vendor but rather an academic contribution to the public library. We show using competitive-ABPP that ABLs are exquisitely selective for PME-1 in living cells and mice, where enzyme inactivation leads to substantial reductions in demethylated PP2A. In summary, we have combined advanced synthetic and chemoproteomic methods to discover a class of ABL inhibitors that can be used to selectively perturb PME-1 activity in diverse biological systems. More generally, these results illustrate how public screening centers can serve as hubs to create spontaneous collaborative opportunities between synthetic chemistry and chemical biology labs interested in creating first-in-class pharmacological probes for challenging protein targets.


Journal of the American Chemical Society | 2012

Confirming Target Engagement for Reversible Inhibitors in Vivo by Kinetically Tuned Activity-Based Probes

Alexander Adibekian; Brent R. Martin; Jae Won Chang; Ku-Lung Hsu; Katsunori Tsuboi; Daniel A. Bachovchin; Anna E Speers; Steven J. Brown; Timothy P. Spicer; Virneliz Fernandez-Vega; Jill Ferguson; Peter Hodder; Hugh Rosen; Benjamin F. Cravatt

The development of small-molecule inhibitors for perturbing enzyme function requires assays to confirm that the inhibitors interact with their enzymatic targets in vivo. Determining target engagement in vivo can be particularly challenging for poorly characterized enzymes that lack known biomarkers (e.g., endogenous substrates and products) to report on their inhibition. Here, we describe a competitive activity-based protein profiling (ABPP) method for measuring the binding of reversible inhibitors to enzymes in animal models. Key to the success of this approach is the use of activity-based probes that show tempered rates of reactivity with enzymes, such that competition for target engagement with reversible inhibitors can be measured in vivo. We apply the competitive ABPP strategy to evaluate a newly described class of piperazine amide reversible inhibitors for the serine hydrolases LYPLA1 and LYPLA2, two enzymes for which selective, in vivo active inhibitors are lacking. Competitive ABPP identified individual piperazine amides that selectively inhibit LYPLA1 or LYPLA2 in mice. In summary, competitive ABPP adapted to operate with moderately reactive probes can assess the target engagement of reversible inhibitors in animal models to facilitate the discovery of small-molecule probes for characterizing enzyme function in vivo.


Chemical Communications | 2010

A fluopol-ABPP HTS assay to identify PAD inhibitors.

Bryan Knuckley; Justin E. Jones; Daniel A. Bachovchin; Jessica L. Slack; Corey P. Causey; Steven J. Brown; Hugh Rosen; Benjamin F. Cravatt; Paul R. Thompson

Protein Arginine Deiminase (PAD) activity is dysregulated in numerous diseases, e.g., Rheumatoid Arthritis. Herein we describe the development of a fluorescence polarization-Activity Based Protein Profiling (fluopol-ABPP) based high throughput screening assay that can be used to identify PAD-selective inhibitors. Using this assay, streptonigrin was identified as a potent, selective, and irreversible PAD4 inactivator.


ACS Chemical Biology | 2012

Novel Inhibitors for PRMT1 Discovered by High-Throughput Screening Using Activity-Based Fluorescence Polarization

Myles B. C. Dillon; Daniel A. Bachovchin; Steven J. Brown; M. G. Finn; Hugh Rosen; Benjamin F. Cravatt; Kerri A. Mowen

Protein arginine methyltransferases (PRMTs) catalyze the posttranslational methylation of arginine using S-adenosylmethionine (SAM) as a methyl-donor. The PRMT family is widely expressed and has been implicated in biological functions such as RNA splicing, transcriptional control, signal transduction, and DNA repair. Therefore, specific inhibitors of individual PRMTs have potentially significant research and therapeutic value. In particular, PRMT1 is responsible for >85% of arginine methyltransferase activity, but currently available inhibitors of PRMT1 lack specificity, efficacy, and bioavailability. To address this limitation, we developed a high-throughput screening assay for PRMT1 that utilizes a hyper-reactive cysteine within the active site, which is lacking in almost all other PRMTs. This assay, which monitors the kinetics of the fluorescence polarization signal increase upon PRMT1 labeling by a rhodamine-containing cysteine-reactive probe, successfully identified two novel inhibitors selective for PRMT1 over other SAM-dependent methyltransferases.


Journal of Medicinal Chemistry | 2011

Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphatase methylesterase-1.

Daniel A. Bachovchin; Andrea M. Zuhl; Anna E Speers; Monique R. Wolfe; Eranthie Weerapana; Steven J. Brown; Hugh Rosen; Benjamin F. Cravatt

The serine hydrolase protein phosphatase methylesterase-1 (PME-1) regulates the methylesterification state of protein phosphatase 2A (PP2A) and has been implicated in cancer and Alzheimers disease. We recently reported a fluorescence polarization-activity-based protein profiling (fluopol-ABPP) high-throughput screen for PME-1 that uncovered a remarkably potent and selective class of aza-β-lactam (ABL) PME-1 inhibitors. Here, we describe a distinct set of sulfonyl acrylonitrile inhibitors that also emerged from this screen. The optimized compound, 28 (AMZ30), selectively inactivates PME-1 and reduces the demethylated form of PP2A in living cells. Considering that 28 is structurally unrelated to ABL inhibitors of PME-1, these agents, together, provide a valuable set of pharmacological probes to study the role of methylation in regulating PP2A function. We furthermore observed that several serine hydrolases were sensitive to analogues of 28, suggesting that more extensive structural exploration of the sulfonyl acrylonitrile chemotype may result in useful inhibitors for other members of this large enzyme class.

Collaboration


Dive into the Daniel A. Bachovchin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugh Rosen

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Anna E Speers

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Peter Hodder

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill Ferguson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Katsunori Tsuboi

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Steven J. Brown

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Timothy P. Spicer

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Timothy Spicer

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge