Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Bader is active.

Publication


Featured researches published by Daniel A. Bader.


Journal of Applied Meteorology and Climatology | 2011

Climate Hazard Assessment for Stakeholder Adaptation Planning in New York City

Radley M. Horton; Vivien Gornitz; Daniel A. Bader; Alex C. Ruane; Richard Goldberg; Cynthia Rosenzweig

AbstractThis paper describes a time-sensitive approach to climate change projections that was developed as part of New York City’s climate change adaptation process and that has provided decision support to stakeholders from 40 agencies, regional planning associations, and private companies. The approach optimizes production of projections given constraints faced by decision makers as they incorporate climate change into long-term planning and policy. New York City stakeholders, who are well versed in risk management, helped to preselect the climate variables most likely to impact urban infrastructure and requested a projection range rather than a single “most likely” outcome. The climate projections approach is transferable to other regions and is consistent with broader efforts to provide climate services, including impact, vulnerability, and adaptation information. The approach uses 16 GCMs and three emissions scenarios to calculate monthly change factors based on 30-yr average future time slices relat...


Annals of the New York Academy of Sciences | 2015

New York City Panel on Climate Change 2015 Report. Chapter 2: Sea level rise and coastal storms.

Radley M. Horton; Christopher M. Little; Vivien Gornitz; Daniel A. Bader; Michael Oppenheimer

New York City’s low-lying areas are home to a large population, critical infrastructure, and iconic natural, economic and cultural resources. These areas are currently exposed to coastal flooding by warmseason tropical storms such as Hurricane Sandya (Box 2.1) and cold-season nor’easters. Sea level rise increases the frequency and intensity of coastal flooding. For example, the 12 inches of sea level rise in New York City since 1900 may have expanded Hurricane Sandy’s flood area by approximately 25 square miles, flooding the homes of more than 80,000 additional peopleb in New York and New Jersey alone (Climate Central 2013, as reported in Miller et al., 2013; see also Chapter 3, NPCC, 2015). This chapter presents an overview of observed sea level rise and coastal storms for the New York metropolitan region, sea level rise projection methods and results, coastal storm projections, and recommendations for future research.


Scientific Reports | 2016

Aging Will Amplify the Heat-related Mortality Risk under a Changing Climate: Projection for the Elderly in Beijing, China.

Tiantian Li; Radley M. Horton; Daniel A. Bader; Maigeng Zhou; Xudong Liang; Jie Ban; Qinghua Sun; Patrick L. Kinney

An aging population could substantially enhance the burden of heat-related health risks in a warming climate because of their higher susceptibility to extreme heat health effects. Here, we project heat-related mortality for adults 65 years and older in Beijing China across 31 downscaled climate models and 2 representative concentration pathways (RCPs) in the 2020s, 2050s, and 2080s. Under a scenario of medium population and RCP8.5, by the 2080s, Beijing is projected to experience 14,401 heat-related deaths per year for elderly individuals, which is a 264.9% increase compared with the 1980s. These impacts could be moderated through adaptation. In the 2080s, even with the 30% and 50% adaptation rate assumed in our study, the increase in heat-related death is approximately 7.4 times and 1.3 times larger than in the 1980s respectively under a scenario of high population and RCP8.5. These findings could assist countries in establishing public health intervention policies for the dual problems of climate change and aging population. Examples could include ensuring facilities with large elderly populations are protected from extreme heat (for example through back-up power supplies and/or passive cooling) and using databases and community networks to ensure the home-bound elderly are safe during extreme heat events.


International Journal of Environmental Research and Public Health | 2013

Projected Heat-Related Mortality in the U.S. Urban Northeast

Elisaveta P. Petkova; Radley M. Horton; Daniel A. Bader; Patrick L. Kinney

Increased heat-related mortality is projected to be among the major impacts of climate change on human health, and the United States urban Northeast region is likely to be particularly vulnerable. In support of regional adaptation planning, quantitative information is needed on potential future health responses at the urban and regional scales. Here, we present future projections of heat-related mortality in Boston, New York and Philadelphia utilizing downscaled next-generation climate models and Representative Concentration Pathways (RCPs) developed in support of the Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment Report (AR5). Our analyses reveal that heat-related mortality rates per 100,000 of population during the baseline period between 1985 and 2006 were highest in Philadelphia followed by New York City and Boston. However, projected heat-related mortality rates in the 2020s, 2050s and 2080s were highest in New York City followed by Philadelphia and Boston. This study may be of value in developing strategies for reducing the future impacts of heat and building climate change resilience in the urban Northeast region.


Earth’s Future | 2017

Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

Robert E. Kopp; Robert M. DeConto; Daniel A. Bader; Carling C. Hay; Radley M. Horton; Scott Kulp; Michael Oppenheimer; David Pollard; Benjamin H. Strauss

Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93–243 cm) and RCP 2.6 (26–98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.


Scientific Reports | 2015

Heat-related mortality projections for cardiovascular and respiratory disease under the changing climate in Beijing, China

Tiantian Li; Jie Ban; Radley M. Horton; Daniel A. Bader; Ganlin Huang; Qinghua Sun; Patrick L. Kinney

Because heat-related health effects tend to become more serious at higher temperatures, there is an urgent need to determine the mortality projection of specific heat-sensitive diseases to provide more detailed information regarding the variation of the sensitivity of such diseases. In this study, the specific mortality of cardiovascular and respiratory disease in Beijing was initially projected under five different global-scale General Circulation Models (GCMs) and two Representative Concentration Pathways scenarios (RCPs) in the 2020s, 2050s, and 2080s compared to the 1980s. Multi-model ensembles indicated cardiovascular mortality could increase by an average percentage of 18.4%, 47.8%, and 69.0% in the 2020s, 2050s, and 2080s under RCP 4.5, respectively, and by 16.6%,73.8% and 134% in different decades respectively, under RCP 8.5 compared to the baseline range. The same increasing pattern was also observed in respiratory mortality. The heat-related deaths under the RCP8.5 scenario were found to reach a higher number and to increase more rapidly during the 21st century compared to the RCP4.5 scenario, especially in the 2050s and the 2080s. The projection results show potential trends in cause-specific mortality in the context of climate change, and provide support for public health interventions tailored to specific climate-related future health risks.


International Journal of Environmental Research and Public Health | 2014

Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities

Elisaveta P. Petkova; Daniel A. Bader; G. Brooke Anderson; Radley M. Horton; Kim Knowlton; Patrick L. Kinney

Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience.


Annals of the New York Academy of Sciences | 2015

New York City Panel on Climate Change 2015 ReportChapter 1: Climate Observations and Projections

Radley M. Horton; Daniel A. Bader; Yochanan Kushnir; Christopher M. Little; Reginald Blake; Cynthia Rosenzweig

Radley Horton,1,a Daniel Bader,1,a Yochanan Kushnir,2 Christopher Little,3 Reginald Blake,4 and Cynthia Rosenzweig5 1Columbia University Center for Climate Systems Research, New York, NY. 2Ocean and Climate Physics Department, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY. 3Atmospheric and Environmental Research, Lexington, MA. 4Physics Department, New York City College of Technology, CUNY, Brooklyn, NY. 5Climate Impacts Group, NASA Goddard Institute for Space Studies; Center for Climate Systems Research, Columbia University Earth Institute, New York, NY


Environmental Health Perspectives | 2016

Towards more comprehensive projections of urban heat-related mortality: estimates for New York City under multiple population, adaptation, and climate scenarios

Elisaveta P. Petkova; Jan Vink; Radley M. Horton; Antonio Gasparrini; Daniel A. Bader; Joe D. Francis; Patrick L. Kinney

Background: High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information to formulate hypotheses about population sensitivity to high temperatures and future demographics. Objectives: The present study derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. Methods: We adopted a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projected heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporated a range of new scenarios for population change until the end of the 21st century. We then estimated future heat-related deaths in New York City by combining the changing temperature–mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs). Results: The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3,331 in the 2080s compared with 638 heat-related deaths annually between 2000 and 2006. Conclusions: These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York City, and they highlight the importance of both demographic change and adaptation responses in modifying future risks. Citation: Petkova EP, Vink JK, Horton RM, Gasparrini A, Bader DA, Francis JD, Kinney PL. 2017. Towards more comprehensive projections of urban heat-related mortality: estimates for New York City under multiple population, adaptation, and climate scenarios. Environ Health Perspect 125:47–55; http://dx.doi.org/10.1289/EHP166


Geophysical Research Letters | 2015

Projected changes in extreme temperature events based on the NARCCAP model suite

Radley M. Horton; Ethan Coffel; Jonathan M. Winter; Daniel A. Bader

Once-per-year (annual) maximum temperature extremes in North American Regional Climate Change Assessment Program (NARCCAP) models are projected to increase more (less) than mean daily maximum summer temperatures over much of the eastern (western) United States. In contrast, the models almost everywhere project greater warming of once-per-year minimum temperatures as compared to mean daily minimum winter temperatures. Under projected changes associated with extremes of the temperature distribution, Baltimores maximum temperature that was met or exceeded once per year historically is projected to occur 17 times per season by midcentury, a 28% increase relative to projections based on summer mean daily maximum temperature change. Under the same approach, historical once-per-year cold events in Baltimore are projected to occur once per decade. The models are generally able to capture observed geopotential height anomalies associated with temperature extremes in two subregions. Projected changes in extreme temperature events cannot be explained by geopotential height anomalies or lower boundary conditions as reflected by soil moisture anomalies or snow water equivalent.

Collaboration


Dive into the Daniel A. Bader's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia Rosenzweig

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qinghua Sun

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge