Daniel Ajona
University of Navarra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Ajona.
Journal of Immunology | 2011
Ann L. White; H. T. Claude Chan; Ali Roghanian; Ruth R. French; C. Ian Mockridge; Alison L. Tutt; Sandra V. Dixon; Daniel Ajona; J. Sjef Verbeek; Aymen Al-Shamkhani; Mark S. Cragg; Stephen A. Beers; Martin J. Glennie
A high activatory/inhibitory FcγR binding ratio is critical for the activity of mAb such as rituximab and alemtuzumab that attack cancer cells directly and eliminate them by recruiting immune effectors. Optimal FcγR binding profiles of other anti-cancer mAb, such as immunostimulatory mAb that stimulate or block immune receptors, are less clear. In this study, we analyzed the importance of isotype and FcγR interactions in controlling the agonistic activity of the anti-mouse CD40 mAb 3/23. Mouse IgG1 (m1) and IgG2a (m2a) variants of the parental 3/23 (rat IgG2a) were engineered and used to promote humoral and cellular responses against OVA. The mouse IgG1 3/23 was highly agonistic and outperformed the parental Ab when promoting Ab (10–100-fold) and T cell (OTI and OTII) responses (2- to >10-fold). In contrast, m2a was almost completely inactive. Studies in FcγR knockout mice demonstrated a critical role for the inhibitory FcγRIIB in 3/23 activity, whereas activatory FcγR (FcγRI, -III, and -IV) was dispensable. In vitro experiments established that the stimulatory effect of FcγRIIB was mediated through Ab cross-linking delivered in trans between neighboring cells and did not require intracellular signaling. Intriguingly, activatory FcγR provided effective cross-linking of 3/23 m2a in vitro, suggesting the critical role of FcγRIIB in vivo reflects its cellular distribution and bioavailability as much as its affinity for a particular Ab isotype. In conclusion, we demonstrate an essential cross-linking role for the inhibitory FcγRIIB in anti-CD40 immunostimulatory activity and suggest that isotype will be an important issue when optimizing reagents for clinical use.
Journal of Immunology | 2012
Leticia Corrales; Daniel Ajona; Stavros Rafail; Juan J. Lasarte; José Ignacio Riezu-Boj; John D. Lambris; Ana Rouzaut; Maria J. Pajares; Luis M. Montuenga; Ruben Pio
The complement system contributes to various immune and inflammatory diseases, including cancer. In this study, we investigated the capacity of lung cancer cells to activate complement and characterized the consequences of complement activation on tumor progression. We focused our study on the production and role of the anaphylatoxin C5a, a potent immune mediator generated after complement activation. We first measured the capacity of lung cancer cell lines to deposit C5 and release C5a. C5 deposition, after incubation with normal human serum, was higher in lung cancer cell lines than in nonmalignant bronchial epithelial cells. Notably, lung malignant cells produced complement C5a even in the absence of serum. We also found a significant increase of C5a in plasma from patients with non-small cell lung cancer, suggesting that the local production of C5a is followed by its systemic diffusion. The contribution of C5a to lung cancer growth in vivo was evaluated in the Lewis lung cancer model. Syngeneic tumors of 3LL cells grew slower in mice treated with an antagonist of the C5a receptor. C5a did not modify 3LL cell proliferation in vitro but induced endothelial cell chemotaxis and blood-vessels formation. C5a also contributed to the immunosuppressive microenvironment required for tumor growth. In particular, blockade of C5a receptor significantly reduced myeloid-derived suppressor cells and immunomodulators ARG1, CTLA-4, IL-6, IL-10, LAG3, and PDL1 (B7H1). In conclusion, lung cancer cells have the capacity to generate C5a, a molecule that creates a favorable tumor microenvironment for lung cancer progression.
Cancer Research | 2004
Daniel Ajona; Zafira Castaño; Mercedes Garayoa; Enrique Zudaire; Maria J. Pajares; Alfredo Martínez; Frank Cuttitta; Luis M. Montuenga; Ruben Pio
The complement system is important in immunosurveillance against tumors. However, malignant cells are usually resistant to complement-mediated lysis. In this study, we examine the expression of factor H, an inhibitor of complement activation, and factor H-like protein 1 (FHL-1), its alternatively spliced form, in lung cancer. We also evaluate the potential effect of factor H/FHL-1 in the protection of lung cancer cells against the activation of the complement cascade. By Northern blot analysis we demonstrate a high expression of factor H and FHL-1 in most non-small cell lung cancer cell lines, although neuroendocrine pulmonary tumors (small cell lung carcinoma and carcinoid cell lines) had undetectable levels. Western blot analysis of conditioned medium showed the active secretion of factor H and FHL-1 by cells that were positive by Northern blot. Expression of factor H/FHL-1 mRNA was also shown in a series of non-small cell lung cancer biopsies by in situ hybridization. Interestingly, many cultured lung cancer cells were able to bind fluorescence-labeled factor H to their surfaces. Deposition of C3 fragments from normal human serum on H1264, a lung adenocarcinoma cell line, was more efficient when factor H/FHL-1 activity was blocked by specific antibodies. Blocking factor H/FHL-1 activity also enhanced the release of anaphylatoxin C5a and moderately increased the susceptibility of these cells to complement-mediated cytotoxicity. In summary, we demonstrate the expression of factor H and FHL-1 by some lung cancer cells and analyze the contribution of these proteins to the protection against complement activation.
Journal of Immunology | 2007
Daniel Ajona; Yi-Fan Hsu; Leticia Corrales; Luis M. Montuenga; Ruben Pio
Malignant cells are often resistant to complement activation through the enhanced expression of complement inhibitors. In this work, we examined the protective role of factor H, CD46, CD55, and CD59 in two non-small cell lung cancer cell lines, H1264 and A549, upon activation of the classical pathway of complement. Complement was activated with polyclonal Abs raised against each cell line. After blocking factor H activity with a neutralizing Ab, C3 deposition and C5a release were more efficient. Besides, a combined inhibition of factor H and CD59 significantly increased complement-mediated lysis. CD46 and CD55 did not show any effect in the control of complement activation. Factor H expression was knockdown on A549 cells using small interfering RNA. In vivo growth of factor H-deficient cells in athymic mice was significantly reduced. C3 immunocytochemistry on explanted xenografts showed an enhanced activation of complement in these cells. Besides, when mice were depleted of complement with cobra venom factor, growth was recovered, providing further evidence that complement was important in the reduction of in vivo growth. In conclusion, we show that expression of the complement inhibitor factor H by lung cancer cells can prevent complement activation and improve tumor development in vivo. This may have important consequences in the efficiency of complement-mediated immunotherapies.
Seminars in Immunology | 2013
Ruben Pio; Daniel Ajona; John D. Lambris
For decades, complement has been recognized as an effector arm of the immune system that contributes to the destruction of tumor cells. In fact, many therapeutic strategies have been proposed that are based on the intensification of complement-mediated responses against tumors. However, recent studies have challenged this paradigm by demonstrating a tumor-promoting role for complement. Cancer cells seem to be able to establish a convenient balance between complement activation and inhibition, taking advantage of complement initiation without suffering its deleterious effects. Complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. In this context, inhibition of complement activation would be a therapeutic option for treating cancer. This concept is relatively new and deserves closer attention. In this article, we summarize the mechanisms of complement activation on cancer cells, the cancer-promoting effect of complement initiation, and the rationale behind the use of complement inhibition as a therapeutic strategy against cancer.
Journal of the National Cancer Institute | 2013
Daniel Ajona; Maria J. Pajares; Leticia Corrales; Jose Luis Perez-Gracia; Jackeline Agorreta; Maria D. Lozano; Wenceslao Torre; Pierre P. Massion; Juan P. de-Torres; Eloisa Jantus-Lewintre; Carlos Camps; Javier J. Zulueta; Luis M. Montuenga; Ruben Pio
BACKGROUND There is a medical need for diagnostic biomarkers in lung cancer. We evaluated the diagnostic performance of complement activation fragments. METHODS We assessed complement activation in four bronchial epithelial and seven lung cancer cell lines. C4d, a degradation product of complement activation, was determined in 90 primary lung tumors; bronchoalveolar lavage supernatants from patients with lung cancer (n = 50) and nonmalignant respiratory diseases (n = 22); and plasma samples from advanced (n = 50) and early lung cancer patients (n = 84) subjects with inflammatory lung diseases (n = 133), and asymptomatic individuals enrolled in a lung cancer computed tomography screening program (n = 190). Two-sided P values were calculated by Mann-Whitney U test. RESULTS Lung cancer cells activated the classical complement pathway mediated by C1q binding that was inhibited by phosphomonoesters. Survival was decreased in patients with high C4d deposition in tumors (hazard ratio [HR] = 3.06; 95% confidence interval [CI] = 1.18 to 7.91). C4d levels were increased in bronchoalveolar lavage fluid from lung cancer patients compared with patients with nonmalignant respiratory diseases (0.61 ± 0.87 vs 0.16 ± 0.11 µg/mL; P < .001). C4d levels in plasma samples from lung cancer patients at both advanced and early stages were also increased compared with control subjects (4.13 ± 2.02 vs 1.86 ± 0.95 µg/mL, P < 0.001; 3.18 ± 3.20 vs 1.13 ± 0.69 µg/mL, P < .001, respectively). C4d plasma levels were associated with shorter survival in patients at advanced (HR = 1.59; 95% CI = 0.97 to 2.60) and early stages (HR = 5.57; 95% CI = 1.60 to 19.39). Plasma C4d levels were reduced after surgical removal of lung tumors (P < .001) and were associated with increased lung cancer risk in asymptomatic individuals with (n = 32) or without lung cancer (n = 158) (odds ratio = 4.38; 95% CI = 1.61 to 11.93). CONCLUSIONS Complement fragment C4d may serve as a biomarker for early diagnosis and prognosis of lung cancer.
Cancer Discovery | 2017
Daniel Ajona; Sergio Ortiz-Espinosa; Haritz Moreno; Teresa Lozano; Maria J. Pajares; Jackeline Agorreta; Cristina Bertolo; Juan J. Lasarte; Silvestre Vicent; Kai Hoehlig; Axel Vater; Fernando Lecanda; Luis M. Montuenga; Ruben Pio
Disruption of the programmed cell death protein 1 (PD-1) pathway with immune checkpoint inhibitors represents a major breakthrough in the treatment of non-small cell lung cancer. We hypothesized that combined inhibition of C5a/C5aR1 and PD-1 signaling may have a synergistic antitumor effect. The RMP1-14 antibody was used to block PD-1, and an L-aptamer was used to inhibit signaling of complement C5a with its receptors. Using syngeneic models of lung cancer, we demonstrate that the combination of C5a and PD-1 blockade markedly reduces tumor growth and metastasis and leads to prolonged survival. This effect is accompanied by a negative association between the frequency of CD8 T cells and myeloid-derived suppressor cells within tumors, which may result in a more complete reversal of CD8 T-cell exhaustion. Our study provides support for the clinical evaluation of anti-PD-1 and anti-C5a drugs as a novel combination therapeutic strategy for lung cancer.Significance: Using a variety of preclinical models of lung cancer, we demonstrate that the blockade of C5a results in a substantial improvement in the efficacy of anti-PD-1 antibodies against lung cancer growth and metastasis. This study provides the preclinical rationale for the combined blockade of PD-1/PD-L1 and C5a to restore antitumor immune responses, inhibit tumor cell growth, and improve outcomes of patients with lung cancer. Cancer Discov; 7(7); 694-703. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 653.
Immunological Reviews | 2016
Pedro Berraondo; Luna Minute; Daniel Ajona; Leticia Corrales; Ignacio Melero; Ruben Pio
Chronic inflammation in the tumor microenvironment and evasion of the antitumor effector immune response are two of the emerging hallmarks required for oncogenesis and cancer progression. The innate immune system not only plays a critical role in perpetuating these tumor‐promoting hallmarks but also in developing antitumor adaptive immune responses. Thus, understanding the dual role of the innate system in cancer immunology is required for the design of combined immunotherapy strategies able to tackle established tumors. Here, we review recent advances in the understanding of the role of cell populations and soluble components of the innate immune system in cancer, with a focus on complement, the adapter molecule Stimulator of Interferon Genes, natural killer cells, myeloid cells, and B cells.
Molecular Oncology | 2016
Fernando J. de Miguel; María J. Pajares; Elena Martínez-Terroba; Daniel Ajona; Xabier Morales; Ravi Datta Sharma; Francisco J. Pardo; Ana Rouzaut; Angel Rubio; Luis M. Montuenga; Ruben Pio
Increasing interest has been devoted in recent years to the understanding of alternative splicing in cancer. In this study, we performed a genome‐wide analysis to identify cancer‐associated splice variants in non‐small cell lung cancer. We discovered and validated novel differences in the splicing of genes known to be relevant to lung cancer biology, such as NFIB, ENAH or SPAG9. Gene enrichment analyses revealed an important contribution of alternative splicing to cancer‐related molecular functions, especially those involved in cytoskeletal dynamics. Interestingly, a substantial fraction of the altered genes found in our analysis were targets of the protein quaking (QKI), pointing to this factor as one of the most relevant regulators of alternative splicing in non‐small cell lung cancer. We also found that ESYT2, one of the QKI targets, is involved in cytoskeletal organization. ESYT2‐short variant inhibition in lung cancer cells resulted in a cortical distribution of actin whereas inhibition of the long variant caused an increase of endocytosis, suggesting that the cancer‐associated splicing pattern of ESYT2 has a profound impact in the biology of cancer cells. Finally, we show that low nuclear QKI expression in non‐small cell lung cancer is an independent prognostic factor for disease‐free survival (HR = 2.47; 95% CI = 1.11–5.46, P = 0.026). In conclusion, we identified several splicing variants with functional relevance in lung cancer largely regulated by the splicing factor QKI, a tumor suppressor associated with prognosis in lung cancer.
Cancer Epidemiology, Biomarkers & Prevention | 2010
Ruben Pio; Javier Garcia; Leticia Corrales; Daniel Ajona; Michael Fleischhacker; Maria J. Pajares; Felipe Cardenal; Luis Seijo; Javier J. Zulueta; Ernest Nadal; Christian Witt; Maria D. Lozano; Bernd Schmidt; Luis M. Montuenga
Background: Cytologic examination of specimens obtained from the respiratory tract is a lung cancer diagnostic procedure with high specificity but moderate sensitivity. The use of molecular biomarkers may enhance the sensitivity of cytologic examination in the detection of lung cancer. Methods: Complement factor H, a protein secreted by lung cancer cells, was quantified in a series of bronchoalveolar lavage supernatants from lung cancer patients and patients with nonmalignant respiratory diseases. Albumin, total protein content, and hemoglobin were also analyzed. Results were validated in independent sets of bronchoalveolar lavage and sputum supernatants. Results: There was a significantly higher concentration of factor H in bronchoalveolar lavage samples from lung cancer patients. The sensitivity and specificity of the factor H test was 82% and 77%, respectively. These results were validated in an independent set of patients with nearly identical results. Furthermore, 70% and 45% of bronchoalveolar lavage fluids from central and peripheral tumors, respectively, reported as cytologically negative, were classified as positive using this marker. Finally, the test was evaluated in a series of sputum supernatants from lung cancer patients and controls. The sensitivity and specificity of the factor H test in this series was 80% and 88%, respectively. Conclusion: Factor H is elevated in bronchoalveolar lavage and sputum from lung cancer patients. Impact: Measurement of molecular biomarkers, such as complement factor H, may be used in the future as an adjunct to cytology in the diagnosis of malignant pulmonary diseases. Cancer Epidemiol Biomarkers Prev; 19(10); 2665–72. ©2010 AACR.