Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando Lecanda is active.

Publication


Featured researches published by Fernando Lecanda.


Nature Genetics | 2013

Genome-wide association study identifies two susceptibility loci for osteosarcoma

Sharon A. Savage; Lisa Mirabello; Zhaoming Wang; Julie M. Gastier-Foster; Richard Gorlick; Chand Khanna; Adrienne M. Flanagan; Roberto Tirabosco; Irene L. Andrulis; Jay S. Wunder; Nalan Gokgoz; Ana Patiño-García; Luis Sierrasesúmaga; Fernando Lecanda; Nilgun Kurucu; Inci Ilhan; Neriman Sari; Massimo Serra; Claudia M. Hattinger; Piero Picci; Logan G. Spector; Donald A. Barkauskas; Neyssa Marina; Silvia Regina Caminada de Toledo; Antonio Sergio Petrilli; Maria Fernanda Amary; Dina Halai; David Thomas; Chester W. Douglass; Paul S. Meltzer

Osteosarcoma is the most common primary bone malignancy of adolescents and young adults. To better understand the genetic etiology of osteosarcoma, we performed a multistage genome-wide association study consisting of 941 individuals with osteosarcoma (cases) and 3,291 cancer-free adult controls of European ancestry. Two loci achieved genome-wide significance: a locus in the GRM4 gene at 6p21.3 (encoding glutamate receptor metabotropic 4; rs1906953; P = 8.1 × 10−9) and a locus in the gene desert at 2p25.2 (rs7591996 and rs10208273; P = 1.0 × 10−8 and 2.9 × 10−7, respectively). These two loci warrant further exploration to uncover the biological mechanisms underlying susceptibility to osteosarcoma.


Cancer Research | 2008

A Novel Lung Cancer Signature Mediates Metastatic Bone Colonization by a Dual Mechanism

Silvestre Vicent; Diego Luis-Ravelo; Iker Antón; Ignacio García-Tuñón; Francisco Borrás-Cuesta; Javier Dotor; Javier De Las Rivas; Fernando Lecanda

Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and a dismal prognosis. To identify and functionally characterize genes involved in the mechanisms of osseous metastasis, we developed a murine lung cancer model. Comparative transcriptomic analysis identified genes encoding signaling molecules (such as TCF4 and PRKD3) and cell anchorage-related proteins (MCAM and SUSD5), some of which were basally modulated by transforming growth factor-beta (TGF-beta) in tumor cells and in conditions mimicking tumor-stromal interactions. Triple gene combinations induced not only high osteoclastogenic activity but also a marked enhancement of global metalloproteolytic activities in vitro. These effects were strongly associated with robust bone colonization in vivo, whereas this gene subset was ineffective in promoting local tumor growth and cell homing activity to bone. Interestingly, global inhibition of metalloproteolytic activities and simultaneous TGF-beta blockade in vivo led to increased survival and a remarkable attenuation of bone tumor burden and osteolytic metastasis. Thus, this metastatic gene signature mediates bone matrix degradation by a dual mechanism of induction of TGF-beta-dependent osteoclastogenic bone resorption and enhancement of stroma-dependent metalloproteolytic activities. Our findings suggest the cooperative contribution of host-derived and cell autonomous effects directed by a small subset of genes in mediating aggressive osseous colonization.


Nature Communications | 2014

Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle

Francois Lamoureux; Marc Baud’huin; Lidia Rodriguez Calleja; Camille Jacques; Martine Berreur; Françoise Rédini; Fernando Lecanda; James E. Bradner; Dominique Heymann; Benjamin Ory

The vicious cycle established between bone-associated tumours and bone resorption is the central problem with therapeutic strategies against primary bone tumours and bone metastasis. Here we report data to support inhibition of BET bromodomain proteins as a promising therapeutic strategy that target simultaneously the three partners of the vicious cycle. Treatment with JQ1, a BET bromodomain inhibitor, reduces cell viability of osteosarcoma cells and inhibits osteoblastic differentiation both in vitro and in vivo. These effects are associated with transcriptional silencing of MYC and RUNX2, resulting from the depletion of BRD4 from their respective loci. Moreover, JQ1 also inhibits osteoclast differentiation by interfering with BRD4-dependent RANKL activation of NFATC1 transcription. Collectively, our data indicate that JQ1 is a potent inhibitor of osteoblast and osteoclast differentiation as well as bone tumour development.


Clinical Cancer Research | 2012

Inhibition of Collagen Receptor Discoidin Domain Receptor-1 (DDR1) Reduces Cell Survival, Homing, and Colonization in Lung Cancer Bone Metastasis

Karmele Valencia; Cristina Ormazábal; Carolina Zandueta; Diego Luis-Ravelo; Iker Antón; Maria J. Pajares; Jackeline Agorreta; Luis M. Montuenga; Susana Martínez-Canarias; Birgit Leitinger; Fernando Lecanda

Purpose: We investigated the role of the collagen-binding receptor discoidin domain receptor-1 (DDR1) in the initiation and development of bone metastasis. Experimental Design: We conducted immunohistochemical analyses in a cohort of 83 lung cancer specimens and examined phosphorylation status in a panel of human lung cancer cell lines. Adhesion, chemotaxis, invasiveness, metalloproteolytic, osteoclastogenic, and apoptotic assays were conducted in DDR1-silenced cells. In vivo, metastatic osseous homing and colonization were assessed in a murine model of metastasis. Results: DDR1 was expressed in a panel of human lung cancer cell lines, and high DDR1 levels in human lung tumors were associated with poor survival. Knockdown (shDDR1) cells displayed unaltered growth kinetics in vitro and in vivo. In contrast, shDDR1 cells showed reduced invasiveness in collagen matrices and increased apoptosis in basal conditions and induced apoptosis in vitro. More importantly, conditioned media of DDR1-knockdown cells decreased osteoclastogenic activity in vitro. Consequently, in a model of tumor metastasis to bone, lack of DDR1 showed decreased metastatic activity associated with reduced tumor burden and osteolytic lesions. These effects were consistent with a substantial reduction in the number of cells reaching the bone compartment. Moreover, intratibial injection of shDDR1 cells significantly decreased bone tumor burden, suggesting impaired colonization ability that was highly dependent on the bone microenvironment. Conclusions: Disruption of DDR1 hampers tumor cell survival, leading to impaired early tumor–bone engagement during skeletal homing. Furthermore, inhibition of DDR1 crucially alters bone colonization. We suggest that DDR1 represents a novel therapeutic target involved in bone metastasis. Clin Cancer Res; 18(4); 969–80. ©2012 AACR.


Laboratory Investigation | 2004

Altered expression of adhesion molecules and epithelial-mesenchymal transition in silica-induced rat lung carcinogenesis.

David Blanco; Silvestre Vicent; Eider Elizegi; Irene Pino; Mario F. Fraga; Manel Esteller; Umberto Saffiotti; Fernando Lecanda; Luis M. Montuenga

Loss of the epithelial phenotype and disruption of adhesion molecules is a hallmark in the epithelial–mesenchymal transition (EMT) reported in several types of cancer. Most of the studies about the relevance of adhesion and junction molecules in lung cancer have been performed using established tumors or in vitro models. The sequential molecular events leading to EMT during lung cancer progression are still not well understood. We have used a rat model for multistep lung carcinogenesis to study the status of adherens and tight junction proteins and mesenchymal markers during EMT. After silica-induced chronic inflammation, rats sequentially develop epithelial hyperplasia, preneoplastic lesions, and tumors such as adenocarcinomas and squamous cell carcinomas. In comparison with normal and hyperplastic bronchiolar epithelium and with hyperplastic alveolar type II cells, the expression levels of E-cadherin, α-catenin and β-catenin were significantly reduced in adenomatoid preneoplastic lesions and in late tumors. The loss of E-cadherin in tumors was associated with its promoter hypermethylation. α- and β-catenin dysregulation lead to cytoplasmic accumulation in some carcinomas. No nuclear β-catenin localization was found at any stage of any preneoplastic or neoplastic lesion. Zonula occludens protein-1 was markedly decreased in 66% of adenocarcinomas and in 100% squamous cell carcinomas. The mesenchymal-associated proteins N-cadherin and vimentin were analyzed as markers for EMT. N-cadherin was de novo expressed in 32% of adenocarcinomas and 33% of squamous cell carcinomas. Vimentin-positive tumor cells were found in 35% of adenocarcinomas and 88% of squamous cell carcinomas. Mesenchymal markers were absent in precursor lesions, both hyperplastic and adenomatoid. The present results show that silica-induced rat lung carcinogenesis is a good model to study EMT in vivo, and also provide in vivo evidence suggesting that the changes in cell–cell adhesion molecules are an early event in lung carcinogenesis, while EMT occurs at a later stage.


Molecular Oncology | 2014

miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization

Karmele Valencia; Diego Luis-Ravelo; Nicolas Bovy; Iker Antón; Susana Martínez-Canarias; Carolina Zandueta; Cristina Ormazábal; Ingrid Struman; Sébastien Tabruyn; Vera Rebmann; J. de las Rivas; Elisabet Guruceaga; Eva Bandrés; Fernando Lecanda

Bone metastasis represents one of the most deleterious clinical consequences arising in the context of many solid tumors. Severe osteolysis results from tumor cell colonization of the bone compartment, a process which entails reciprocal exchange of soluble signals between tumor cells and their osseous microenvironment. Recent evidence indicates that tumor‐intrinsic miRNAs are pleiotropic regulators of gene expression. But they are also frequently released in exosome‐like vesicles (ELV). Yet the functional relevance of the transference of tumor‐derived ELV and their miRNA cargo to the extracellular milieu during osseous colonization is unknown.


Cancer Research | 2011

PDGFR Signaling Blockade in Marrow Stroma Impairs Lung Cancer Bone Metastasis

Raúl Catena; Diego Luis-Ravelo; Iker Antón; Carolina Zandueta; Pablo Salazar-Colocho; Leyre Larzabal; Alfonso Calvo; Fernando Lecanda

Bone microenvironment and cell-cell interactions are crucial for the initiation and development of metastasis. By means of a pharmacologic approach, using the multitargeted tyrosine kinase inhibitor sunitinib, we tested the relevance of the platelet-derived growth factor receptor (PDGFR) axis in the bone marrow (BM) stromal compartment for the initiation and development of lung cancer metastasis to bone. PDGFRβ was found to be the main tyrosine kinase target of sunitinib expressed in BM stromal ST-2 and MC3T3-E1 preosteoblastic cells. In contrast, no expression of sunitinib-targeted receptors was found in A549M1 and low levels in H460M5 lung cancer metastatic cells. Incubation of ST-2 and human BM endothelial cells with sunitinib led to potent cell growth inhibition and induction of apoptosis in a dose-dependent manner. Similarly, sunitinib induced a robust proapoptotic effect in vivo on BM stromal PDGFRβ(+) cells and produced extensive disruption of tissue architecture and vessel leakage in the BM cavity. Pretreatment of ST-2 cells with sunitinib also hindered heterotypic adhesion to lung cancer cell lines. These effects were correlated with changes in cell-cell and cell-matrix molecules in both stromal and tumor cells. Pretreatment of mice with sunitinib before intracardiac inoculation of A549M1 or H460M5 cells caused marked inhibition of tumor cells homing to bone, whereas no effect was found when tumor cells were pretreated before inoculation. Treatment with sunitinib dramatically increased overall survival and prevented tumor colonization but not bone lesions, whereas combination with zoledronic acid resulted in marked reduction of osteolytic lesions and osseous tumor burden. Thus, disruption of the PDGFR axis in the BM stroma alters heterotypic tumor-stromal and tumor-matrix interactions, thereby preventing efficient engagement required for bone homing and osseous colonization. These results support the notion that concomitant targeting of the tumor and stromal compartment is a more effective approach for blocking bone metastasis.


Cell Communication and Adhesion | 2001

Proliferation, differentiation and apoptosis in connexin43-null osteoblasts

Federico Furlan; Fernando Lecanda; Joanne Screen; Roberto Civitelli

Osteoblasts are highly coupled by gap junctions formed primarily by connexin43 (Cx43). We have shown that interference with Cx43 expression or function disrupts transcriptional regulation of osteoblast genes, and that deletion of Cx43 in the mouse causes skeletal malformations, delayed mineralization, and osteoblast dysfunction. Here, we studied the mechanisms by which genetic deficiency of Cx43 alters osteoblast development. While cell proliferation rates were similar in osteoblastic cells derived from calvaria of Cx43-null and wild type mice, camptothecin-induced apoptosis was 3-fold higher in mutant compared to wild type osteoblasts. When grown in mineralizing medium, Cx43-null cells were able to produce mineralized matrix but it took one week longer to reach the same mineralization levels as in normal cells. Likewise, expression of alkaline phosphatase activity per cell—a marker of osteoblast differentiation—was maximal only 2 weeks later in Cx43-null relative to wild-type cells. These observations suggest that Cx43 is important for a normal and timely development of the osteoblastic phenotype. Delayed differentiation and increase programmed cell death may explain the skeletal phenotype of Cx43-null mice.


Journal of Bone and Mineral Research | 2011

CYR61 downregulation reduces osteosarcoma cell invasion, migration, and metastasis.

Olivia Fromigué; Zahia Hamidouche; Pascal Vaudin; Fernando Lecanda; Ana Patiño; Pascal Barbry; Bernard Mari; Pierre J. Marie

Osteosarcoma is the most common primary tumor of bone. The rapid development of metastatic lesions and resistance to chemotherapy remain major mechanisms responsible for the failure of treatments and the poor survival rate for patients. We showed previously that the HMGCoA (3‐hydroxy‐3‐methylglutaryl‐coenzyme A) reductase inhibitor statin exhibits antitumoral effects on osteosarcoma cells. Here, using microarray analysis, we identify Cyr61 as a new target of statins. Transcriptome and molecular analyses revealed that statins downregulate Cyr61 expression in human and murine osteosarcoma cells. Cyr61 silencing in osteosarcoma cell lines enhanced cell death and reduced cell migration and cell invasion compared with parental cells, whereas Cyr61 overexpression had opposite effects. Cyr61 expression was evaluated in 231 tissue cores from osteosarcoma patients. Tissue microarray analysis revealed that Cyr61 protein expression was higher in human osteosarcoma than in normal bone tissue and was further increased in metastatic tissues. Finally, tumor behavior and metastasis occurrence were analyzed by intramuscular injection of modified osteosarcoma cells into BALB/c mice. Cyr61 overexpression enhanced lung metastasis development, whereas cyr61 silencing strongly reduced lung metastases in mice. The results reveal that cyr61 expression increases with tumor grade in human osteosarcoma and demonstrate that cyr61 silencing inhibits in vitro osteosarcoma cell invasion and migration as well as in vivo lung metastases in mice. These data provide a novel molecular target for therapeutic intervention in metastatic osteosarcoma.


Journal of the National Cancer Institute | 2015

Germline TP53 Variants and Susceptibility to Osteosarcoma

Lisa Mirabello; Meredith Yeager; Phuong L. Mai; Julie M. Gastier-Foster; Richard Gorlick; Chand Khanna; Ana Patiño-García; Luis Sierrasesúmaga; Fernando Lecanda; Irene L. Andrulis; Jay S. Wunder; Nalan Gokgoz; Donald A. Barkauskas; Xijun Zhang; Aurelie Vogt; Joseph Boland; Stephen J. Chanock; Sharon A. Savage

The etiologic contribution of germline genetic variation to sporadic osteosarcoma is not well understood. Osteosarcoma is a sentinel cancer of Li-Fraumeni syndrome (LFS), in which approximately 70% of families meeting the classic criteria have germline TP53 mutations. We sequenced TP53 exons in 765 osteosarcoma cases. Data were analyzed with χ(2) tests, logistic regression, and Cox proportional hazards regression models. We observed a high frequency of young osteosarcoma cases (age <30 years) carrying a known LFS- or likely LFS-associated mutation (3.8%) or rare exonic variant (5.7%) with an overall frequency of 9.5%, compared with none in case patients age 30 years and older (P < .001). This high TP53 mutation prevalence in young osteosarcoma cases is statistically significantly greater than the previously reported prevalence of 3% (P = .0024). We identified a novel association between a TP53 rare variant and metastasis at diagnosis of osteosarcoma (rs1800372, odds ratio = 4.27, 95% confidence interval = 1.2 to 15.5, P = .026). Genetic susceptibility to young onset osteosarcoma is distinct from older adult onset osteosarcoma, with a high frequency of LFS-associated and rare exonic TP53 variants.

Collaboration


Dive into the Fernando Lecanda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge