Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Andersson is active.

Publication


Featured researches published by Daniel Andersson.


Addiction Biology | 2010

Ghrelin increases intake of rewarding food in rodents.

Emil Egecioglu; Elisabet Jerlhag; Nicolas Salomé; Karolina P. Skibicka; David Haage; Mohammad Bohlooly-Y; Daniel Andersson; Mikael Bjursell; Daniel Perrissoud; Jörgen A. Engel; Suzanne L. Dickson

We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS‐R1A) and rats treated peripherally with a GHS‐R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS‐R1A knockout mice. Acute bilateral intra‐VTA administration of ghrelin increased 1‐hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA‐lesioned rats had normal intracerebroventricular ghrelin‐induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS‐R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food.


Journal of Neurochemistry | 2010

L-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson's disease: temporal and quantitative relationship to the expression of dyskinesia.

Hanna Lindgren; Daniel Andersson; Sören Lagerkvist; Hans Nissbrandt; M. Angela Cenci

J. Neurochem. (2010) 112, 1465–1476.


European Journal of Neuroscience | 2006

Partial depletion of dopamine in substantia nigra impairs motor performance without altering striatal dopamine neurotransmission

Daniel Andersson; Hans Nissbrandt; Filip Bergquist

Previous data indicate that the release of somatodendritic dopamine in substantia nigra influences motor activity and coordination, but the relative importance of somatodendritic dopamine release vs. terminal striatal dopamine release remains to be determined. We utilized simultaneous measurement of dopamine neurotransmission by microdialysis and motor performance assessment by rotarod test to investigate the effects of local dopamine depletion in rats. The vesicular monoamine transporter inhibitor tetrabenazine (100 µm) was administered locally in substantia nigra as well as in striatum. Nigral tetrabenazine administration decreased nigral dopamine dialysate concentrations to 7% of baseline and whole‐tissue dopamine content by 60%. Nigral dopamine depletion was associated with a reduction in motor performance to 73 ± 6% of pretreatment value, but did not alter dialysate dopamine concentrations in the ipsilateral striatum. Striatal tetrabenazine administration decreased striatal dopamine dialysate concentrations to 5% of baseline and doubled the somatodendritic dopamine response to motor activity, but it was not associated with changes in motor performance or dopamine content in striatal tissue. Simultaneous treatment of substantia nigra and striatum reduced motor performance to 58 ± 5% of the pretreatment value. The results of this study indicate that partial depletion of nigral dopamine stores can significantly impair motor functions, and that increased nigral dopamine release can counteract minor impairments of striatal dopamine transmission.


The Journal of Neuroscience | 2009

Restricted Cortical and Amygdaloid Removal of Vesicular Glutamate Transporter 2 in Preadolescent Mice Impacts Dopaminergic Activity and Neuronal Circuitry of Higher Brain Function

Åsa Wallén-Mackenzie; Karin Nordenankar; Kim Fejgin; Malin C. Lagerström; Lina Emilsson; Robert Fredriksson; Caroline Wass; Daniel Andersson; Emil Egecioglu; My Andersson; Joakim Strandberg; Örjan Lindhe; Helgi B. Schiöth; Karima Chergui; Eric Hanse; Bengt Långström; Anders Fredriksson; Lennart Svensson; Erika Roman; Klas Kullander

A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.


Experimental Neurology | 2010

Motor activity-induced dopamine release in the substantia nigra is regulated by muscarinic receptors

Daniel Andersson; Evelina Björnsson; Filip Bergquist; Hans Nissbrandt

Nigro-striatal neurons release dopamine not only from their axon terminals in the striatum, but also from somata and dendrites in the substantia nigra. Somatodendritic dopamine release in the substantia nigra can facilitate motor function by mechanisms that may act independently of axon terminal dopamine release in the striatum. The dopamine neurons in the substantia nigra receive a cholinergic input from the pedunculopontine nucleus. Despite recent efforts to introduce this nucleus as a potential target for deep brain stimulation to treat motor symptoms in Parkinsons disease; and the well-known antiparkinsonian effects of anticholinergic drugs; the cholinergic influence on somatodendritic dopamine release is not well understood. The aim of this study was to investigate the possible regulation of locomotor-induced dopamine release in the substantia nigra by endogenous acetylcholine release. In intact and 6-OHDA hemi-lesioned animals alike, the muscarinic antagonist scopolamine, when perfused in the substantia nigra, amplified the locomotor-induced somatodendritic dopamine release to approximately 200% of baseline, compared to 120-130% of baseline in vehicle-treated animals. A functional importance of nigral muscarinic receptor activation was demonstrated in hemi-lesioned animals, where motor performance was significantly improved by scopolamine to 82% of pre-lesion performance, as compared to 56% in vehicle-treated controls. The results indicate that muscarinic activity in the substantia nigra is of functional importance in an animal Parkinsons disease model, and strengthen the notion that nigral dopaminergic regulation of motor activity/performance is independent of striatal dopamine release.


European Journal of Neuroscience | 2011

Gastrectomy alters emotional reactivity in rats: neurobiological mechanisms

Nicolas Salomé; Magdalena Taube; Emil Egecioglu; Caroline Hansson; Björn Stenström; Duan Chen; Daniel Andersson; H. Georg Kuhn; Claes Ohlsson; Suzanne L. Dickson

Gastrectomy (Gsx) is associated with altered emotional function and a predisposition to depression/anxiety disorders. Here we investigated the effects of Gsx on emotional reactivity in rats and explored the underlying neurobiological mechanisms. Gsx‐ and sham‐operated rats were exposed to behavioural tests that explore anxiety‐ and depression‐like behaviour (open field, black and white box, elevated plus maze, social interaction, forced swim) as well as memory (object recognition). The potential neurobiological mechanisms underlying these differences were explored by measuring (i) turnover of candidate neurotransmitter systems in the nucleus accumbens, (ii) hippocampal neurogenesis by BrdU labelling or by analysis of candidate genes involved in neuronal growth and (iii) changes in mRNA expression of candidate genes in dissected hippocampal and amygdala tissue. Data from individual behavioural tests as well as from multivariate analysis revealed differing emotional reactivity between Gsx‐ and sham‐operated rats. Gsx rats showed reduced emotional reactivity in a new environment and decreased depression‐like behaviour. Accumbal serotonin and dopamine turnover were both reduced in Gsx rats. Gsx also led to a memory deficit, although hippocampal neurogenesis was unaffected. Of the many candidate genes studied by real‐time RT‐PCR, we highlight a Gsx‐associated decrease in expression of Egr‐1, a transcription factor linked to neural plasticity and cognition, in the hippocampus and amygdala. Thus, Gsx induces an alteration of emotional reactivity and a memory/cognitive deficit that is associated with reduced turnover of serotonin and dopamine in the nucleus accumbens and decreased expression of Egr‐1 in the hippocampus and amygdala.


Addiction Biology | 2010

Ghrelin increases intake of rewarding food in rodents: Ghrelin and food reward

Emil Egecioglu; Elisabet Jerlhag; Nicolas Salomé; Karolina P. Skibicka; David Haage; Mohammad Bohlooly-Y; Daniel Andersson; Mikael Bjursell; Daniel Perrissoud; Jörgen A. Engel; Suzanne L. Dickson

We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS‐R1A) and rats treated peripherally with a GHS‐R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS‐R1A knockout mice. Acute bilateral intra‐VTA administration of ghrelin increased 1‐hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA‐lesioned rats had normal intracerebroventricular ghrelin‐induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS‐R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food.


Addiction Biology | 2010

PRECLINICAL STUDY: FULL ARTICLE: Ghrelin increases intake of rewarding food in rodents

Emil Egecioglu; Elisabet Jerlhag; Nicolas Salomé; Karolina P. Skibicka; David Haage; Mohammad Bohlooly-Y; Daniel Andersson; Mikael Bjursell; Daniel Perrissoud; Jörgen A. Engel; Suzanne L. Dickson

We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS‐R1A) and rats treated peripherally with a GHS‐R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS‐R1A knockout mice. Acute bilateral intra‐VTA administration of ghrelin increased 1‐hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA‐lesioned rats had normal intracerebroventricular ghrelin‐induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS‐R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food.


Archive | 2003

Key safekeeping device

Robert Fredriksson; Daniel Andersson


Archive | 2002

A key safe-keeping device

Robert Fredriksson; Daniel Andersson

Collaboration


Dive into the Daniel Andersson's collaboration.

Top Co-Authors

Avatar

Emil Egecioglu

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge