Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel B. Stetson is active.

Publication


Featured researches published by Daniel B. Stetson.


Nature Genetics | 2009

Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response

Gillian I. Rice; Jacquelyn Bond; Aruna Asipu; Rebecca L. Brunette; Iain W. Manfield; Ian M. Carr; Jonathan C. Fuller; Richard M. Jackson; Teresa Lamb; Tracy A. Briggs; Manir Ali; Hannah Gornall; Alec Aeby; Simon P Attard-Montalto; Enrico Bertini; C. Bodemer; Knut Brockmann; Louise Brueton; Peter Corry; Isabelle Desguerre; Elisa Fazzi; Angels Garcia Cazorla; Blanca Gener; B.C.J. Hamel; Arvid Heiberg; Matthew Hunter; Marjo S. van der Knaap; Ram Kumar; Lieven Lagae; Pierre Landrieu

Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.


Nature Immunology | 2014

The enemy within: endogenous retroelements and autoimmune disease.

Hannah E. Volkman; Daniel B. Stetson

Inappropriate or chronic detection of self nucleic acids by the innate immune system underlies many human autoimmune diseases. We discuss here an unexpected source of endogenous immunostimulatory nucleic acids: the reverse-transcribed cDNA of endogenous retroelements. The interplay between innate immune sensing and clearance of retroelement cDNA has important implications for the understanding of immune responses to infectious retroviruses such as human immunodeficiency virus (HIV). Furthermore, the detection of cDNA by the innate immune system reveals an evolutionary tradeoff: selection for a vigorous, sensitive response to infectious retroviruses may predispose the inappropriate detection of endogenous retroelements. We propose that this tradeoff has placed unique constraints on the sensitivity of the DNA-activated antiviral response, with implications for the interactions of DNA viruses and retroviruses with their hosts. Finally, we discuss how better understanding of the intersection of retroelement biology and innate immunity can guide the way to novel therapies for specific autoimmune diseases.


Journal of Experimental Medicine | 2012

Extensive evolutionary and functional diversity among mammalian AIM2-like receptors

Rebecca L. Brunette; Janet M. Young; Deborah G. Whitley; Igor E. Brodsky; Harmit S. Malik; Daniel B. Stetson

An evolutionary and functional analysis of mammalian AIM2-like receptors reveals remarkable diversity and redundancy.


Science | 2015

DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway.

Laura Lau; Elizabeth E. Gray; Rebecca L. Brunette; Daniel B. Stetson

Viral oncogenes remove the hosts STING Cancer-causing viruses, such as the human papilloma virus (HPV) that causes cervical cancer, account for 12% of human cancers. One way they can cause cancer is by targeting tumor suppressor proteins in the host. Now Lau et al. report that DNA tumor viruses can also thwart the hosts immune system. Oncogenes from HPV and human adenovirus bound to the protein STING, a key component of the cGAS-STING pathway that senses and defends against intracellular DNA. In this way, the viruses subvert the hosts antiviral immunity and set up shop, which, for an unlucky few, eventually causes cancer. Science, this issue p. 568 Oncogenes encoded by DNA tumor viruses subvert antiviral immunity. Cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS) detects intracellular DNA and signals through the adapter protein STING to initiate the antiviral response to DNA viruses. Whether DNA viruses can prevent activation of the cGAS-STING pathway remains largely unknown. Here, we identify the oncogenes of the DNA tumor viruses, including E7 from human papillomavirus (HPV) and E1A from adenovirus, as potent and specific inhibitors of the cGAS-STING pathway. We show that the LXCXE motif of these oncoproteins, which is essential for blockade of the retinoblastoma tumor suppressor, is also important for antagonizing DNA sensing. E1A and E7 bind to STING, and silencing of these oncogenes in human tumor cells restores the cGAS-STING pathway. Our findings reveal a host-virus conflict that may have shaped the evolution of viral oncogenes.


Journal of Immunology | 2015

Cutting Edge: cGAS Is Required for Lethal Autoimmune Disease in the Trex1-Deficient Mouse Model of Aicardi–Goutières Syndrome

Elizabeth E. Gray; Piper M. Treuting; Joshua J. Woodward; Daniel B. Stetson

Detection of intracellular DNA triggers activation of the stimulator of IFN genes–dependent IFN-stimulatory DNA (ISD) pathway, which is essential for antiviral immune responses. However, chronic activation of this pathway is implicated in autoimmunity. Mutations in TREX1, a 3′ repair exonuclease that degrades cytosolic DNA, cause Aicardi–Goutières syndrome and chilblain lupus. Trex1−/− mice develop lethal, IFN-driven autoimmune disease that is dependent on activation of the ISD pathway, but the DNA sensors that detect the endogenous DNA that accumulates in Trex1−/− mice have not been defined. Multiple DNA sensors have been proposed to activate the ISD pathway, including cyclic GMP–AMP synthase (cGAS). In this study, we show that Trex1−/− mice lacking cGAS are completely protected from lethality, exhibit dramatically reduced tissue inflammation, and fail to develop autoantibodies. These findings implicate cGAS as a key driver of autoimmune disease and suggest that cGAS inhibitors may be useful therapeutics for Aicardi–Goutières syndrome and related autoimmune diseases.


Nature Immunology | 2014

The SKIV2L RNA exosome limits activation of the RIG-I-like receptors

Sterling Eckard; Gillian I. Rice; Alexandre Fabre; Catherine Badens; Elizabeth E. Gray; Jane Hartley; Yanick J. Crow; Daniel B. Stetson

Sensors of the innate immune system that detect intracellular nucleic acids must be regulated to prevent inappropriate activation by endogenous DNA and RNA. The exonuclease Trex1 regulates the DNA-sensing pathway by metabolizing potential DNA ligands that trigger it. However, an analogous mechanism for regulating the RIG-I-like receptors (RLRs) that detect RNA remains unknown. We found here that the SKIV2L RNA exosome potently limited the activation of RLRs. The unfolded protein response (UPR), which generated endogenous RLR ligands through the cleavage of cellular RNA by the endonuclease IRE-1, triggered the production of type I interferons in cells depleted of SKIV2L. Humans with deficiency in SKIV2L had a type I interferon signature in their peripheral blood. Our findings reveal a mechanism for the intracellular metabolism of immunostimulatory RNA, with implications for specific autoimmune disorders.


Immunity | 2016

The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA.

Elizabeth E. Gray; Damion Winship; Jessica M. Snyder; Stephanie J. Child; Adam P. Geballe; Daniel B. Stetson

Detection of intracellular DNA triggers activation of the STING-dependent interferon-stimulatory DNA (ISD) pathway, which is essential for antiviral responses. Multiple DNA sensors have been proposed to activate this pathway, including AIM2-like receptors (ALRs). Whether the ALRs are essential for activation of this pathway remains unknown. To rigorously explore the function of ALRs, we generated mice lacking all 13 ALR genes. We found that ALRs are dispensable for the type I interferon (IFN) response to transfected DNA ligands, DNA virus infection, and lentivirus infection. We also found that ALRs do not contribute to autoimmune disease in the Trex1(-/-) mouse model of Aicardi-Goutières Syndrome. Finally, CRISPR-mediated disruption of the human AIM2-like receptor IFI16 in primary fibroblasts revealed that IFI16 is not essential for the IFN response to human cytomegalovirus infection. Our findings indicate that ALRs are dispensable for the ISD response and suggest that alternative functions for these receptors should be explored.


Current Opinion in Immunology | 2009

Connections between antiviral defense and autoimmunity

Daniel B. Stetson

Recent advances have revealed a fundamental contradiction in antiviral immunity: innate immune sensors that detect nucleic acids mediate both protective immunity to infection and pathological autoimmune disease. Thus, the study of the mechanics of nucleic acid detection will provide insight into how these systems are inappropriately triggered in autoimmunity, and, conversely, the study of autoimmune disease triggered by these sensors will tell us more about how they are linked to activation of adaptive immunity.


Annual Review of Immunology | 2017

Intracellular Nucleic Acid Detection in Autoimmunity

John T. Crowl; Elizabeth E. Gray; Kathleen Pestal; Hannah E. Volkman; Daniel B. Stetson

Protective immune responses to viral infection are initiated by innate immune sensors that survey extracellular and intracellular space for foreign nucleic acids. The existence of these sensors raises fundamental questions about self/nonself discrimination because of the abundance of self-DNA and self-RNA that occupy these same compartments. Recent advances have revealed that enzymes that metabolize or modify endogenous nucleic acids are essential for preventing inappropriate activation of the innate antiviral response. In this review, we discuss rare human diseases caused by dysregulated nucleic acid sensing, focusing primarily on intracellular sensors of nucleic acids. We summarize lessons learned from these disorders, we rationalize the existence of these diseases in the context of evolution, and we propose that this framework may also apply to a number of more common autoimmune diseases for which the underlying genetics and mechanisms are not yet fully understood.


Current Opinion in Immunology | 2012

Endogenous retroelements and autoimmune disease

Daniel B. Stetson

Innate immune sensors of foreign nucleic acids are essential for antiviral immunity, but these same sensors can cause autoimmune disease through inappropriate detection of self-nucleic acids. The sources of the endogenous RNA and DNA that trigger autoreactive responses include chromatin and ribonucleoproteins that are the targets of autoantibodies in numerous autoimmune diseases, including systemic lupus erythematosus. In this review, I discuss recent data implicating endogenous retroelements-viruses that make up a substantial fraction of our genomes-as an important source of endogenous nucleic acids that can cause autoimmune disease. Understanding this potentially pathologic role for retroelements and the precise mechanisms by which their genomes are sensed and metabolized has important implications for the diagnosis and treatment of numerous autoimmune disorders.

Collaboration


Dive into the Daniel B. Stetson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Gale

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Baker

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John T. Crowl

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge