Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel C. Donato is active.

Publication


Featured researches published by Daniel C. Donato.


PLOS ONE | 2012

Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

Linwood Pendleton; Daniel C. Donato; Brian C. Murray; Stephen Crooks; W. Aaron Jenkins; Samantha Sifleet; Christopher Craft; James W. Fourqurean; J. Boone Kauffman; Núria Marbà; J. Patrick Megonigal; Emily Pidgeon; Dorothée Herr; David Gordon; Alexis Baldera

Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of


Ecological Applications | 2009

Carbon dynamics of Oregon and Northern California forests and potential land‐based carbon storage

Tara W. Hudiburg; Beverly E. Law; David P. Turner; John L. Campbell; Daniel C. Donato; Maureen V. Duane

US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.


Ecosphere | 2011

Mixed‐severity fire regimes: lessons and hypotheses from the Klamath‐Siskiyou Ecoregion

Jessica E. Halofsky; Daniel C. Donato; David E. Hibbs; John Campbell; M. Donaghy Cannon; Joseph B. Fontaine; Jonathan R. Thompson; R. G. Anthony; B. T. Bormann; L. J. Kayes; Beverly E. Law; David L. Peterson; Thomas A. Spies

Net uptake of carbon from the atmosphere (net ecosystem production, NEP) is dependent on climate, disturbance history, management practices, forest age, and forest type. To improve understanding of the influence of these factors on forest carbon stocks and flux in the western United States, federal inventory data and supplemental field measurements at additional plots were used to estimate several important components of the carbon balance in forests in Oregon and Northern California during the 1990s. Species- and ecoregion-specific allometric equations were used to estimate live and dead biomass stores, net primary productivity (NPP), and mortality. In the semiarid East Cascades and mesic Coast Range, mean total biomass was 8 and 24 kg C/m2, and mean NPP was 0.30 and 0.78 kg C.m(-2).yr(-1), respectively. Maximum NPP and dead biomass stores were most influenced by climate, whereas maximum live biomass stores and mortality were most influenced by forest type. Within ecoregions, mean live and dead biomass were usually higher on public lands, primarily because of the younger age class distribution on private lands. Decrease in NPP with age was not general across ecoregions, with no marked decline in old stands (>200 years old) in some ecoregions. In the absence of stand-replacing disturbance, total landscape carbon stocks could theoretically increase from 3.2 +/- 0.34 Pg C to 5.9 +/- 1.34 Pg C (a 46% increase) if forests were managed for maximum carbon storage. Although the theoretical limit is probably unattainable, given the timber-based economy and fire regimes in some ecoregions, there is still potential to significantly increase the land-based carbon storage by increasing rotation age and reducing harvest rates.


Landscape Ecology | 2013

Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research

Monica G. Turner; Daniel C. Donato; William H. Romme

Although mixed-severity fires are among the most widespread disturbances influencing western North American forests, they remain the least understood. A major question is the degree to which mixed-severity fire regimes are simply an ecological intermediate between low- and high-severity fire regimes, versus a unique disturbance regime with distinct properties. The Klamath-Siskiyou Mountains of southwestern Oregon and northwestern California provide an excellent laboratory for studies of mixed-severity fire effects, as structurally diverse vegetation types in the region foster, and partly arise from, fires of variable severity. In addition, many mixed-severity fires have occurred in the region in the last several decades, including the nationally significant 200,000-ha Biscuit Fire. Since 2002, we have engaged in studies of early ecosystem response to 15 of these fires, ranging from determinants of fire effects to responses of vegetation, wildlife, and biogeochemistry. We present here some of our important early findings regarding mixed-severity fire, thereby updating the state of the science on mixed-severity fire regimes and highlighting questions and hypotheses to be tested in future studies on mixed-severity fire regimes. Our studies in the Klamath-Siskiyou Ecoregion suggest that forests with mixed-severity fire regimes are characterized primarily by their intimately mixed patches of vegetation of varied age, resulting from complex variations in both fire frequency and severity and species responses to this variation. Based on our findings, we hypothesize that the proximity of living and dead forest after mixed-severity fire, and the close mingling of early- and late-seral communities, results in unique vegetation and wildlife responses compared to predominantly low- or high-severity fires. These factors also appear to contribute to high resilience of plant and wildlife species to mixed-severity fire in the Klamath-Siskiyou Ecoregion. More informed management of ecosystems with mixed-severity regimes requires understanding of their wide variability in space and time, and the particular ecological responses that this variability elicits.


Canadian Journal of Forest Research | 2009

Conifer regeneration in stand-replacement portions of a large mixed-severity wildfire in the Klamath-Siskiyou Mountains

Daniel C. Donato; Joseph B. Fontaine; John L. Campbell; W. Douglas Robinson; J. Boone Kauffman; Beverly E. Law

Changes in key drivers (e.g., climate, disturbance regimes and land use) may affect the sustainability of forest landscapes and set the stage for increased tension among competing ecosystem services. We addressed two questions about a suite of supporting, regulating and provisioning ecosystem services in each of two well-studied forest landscapes in the western US: (1) How might the provision of ecosystem services change in the future given anticipated trajectories of climate, disturbance regimes, and land use? (2) What is the role of spatial heterogeneity in sustaining future ecosystem services? We determined that future changes in each region are likely to be distinct, but spatial heterogeneity (e.g., the amount and arrangement of surviving forest patches or legacy trees after disturbance) will be important in both landscapes for sustaining forest regeneration, primary production, carbon storage, natural hazard regulation, insect and pathogen regulation, timber production and wildlife habitat. The paper closes by highlighting five general priorities for future research. The science of landscape ecology has much to contribute toward understanding ecosystem services and how land management can enhance—or threaten—the sustainability of ecosystem services in changing landscapes.


Ecological Applications | 2014

Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions

Brian J. Harvey; Daniel C. Donato; William H. Romme; Monica G. Turner

Large-scale wildfires (*10 4 -10 6 ha) have the potential to eliminate seed sources over broad areas and thus may lead to qualitatively different regeneration dynamics than in small burns; however, regeneration after such events has re- ceived little study in temperate forests. Following a 200 000 ha mixed-severity wildfire in Oregon, USA, we quantified (1) conifer and broadleaf regeneration in stand-replacement patches 2 and 4 years postfire; and (2) the relative importance of isolation from seed sources (live trees) versus local site conditions in controlling regeneration. Patch-scale conifer regener- ation density (72%-80% Douglas-fir (Pseudotsuga menziesii (Mirb). Franco)) varied widely, from 127 to 6494 stemsha -1 . Median densities were 1721 and 1603 stemsha -1 2 and 4 years postfire, respectively, i.e., *12 times prefire overstory densities (134 stemsha -1 ). Because of the complex burn mosaic, *58% of stand-replacement area was £200 m from a live-tree edge (seed source), and *81% was £400 m. Median conifer density exceeded 1000 stemsha -1 out to a distance of 400 m from an edge before declining farther away. The strongest controls on regeneration were distance to live trees and soil parent material, with skeletal coarse-grained soils supporting lower densities (133 stemsha -1 ) than fine-grained soils (729-1492 stemsha -1 ). Other site factors (e.g., topography, broadleaf cover) had little association with conifer regen- eration. The mixed-severity fire pattern strongly influenced the regeneration process by providing seed sources throughout much of the burned landscape.


Ecological Applications | 2013

Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone

Daniel C. Donato; Brian J. Harvey; William H. Romme; Martin Simard; Monica G. Turner

The degree to which recent bark beetle (Dendroctonus ponderosae) outbreaks may influence fire severity and postfire tree regeneration is of heightened interest to resource managers throughout western North America, but empirical data on actual fire effects are lacking. Outcomes may depend on burning conditions (i.e., weather during fire), outbreak severity, or intervals between outbreaks and subsequent fire. We studied recent fires that burned through green-attack/red-stage (outbreaks <3 years before fire) and gray-stage (outbreaks 3–15 years before fire) subalpine forests dominated by lodgepole pine (Pinus contorta var. latifolia) in Greater Yellowstone, Wyoming, USA, to determine if fire severity was linked to prefire beetle outbreak severity and whether these two disturbances produced compound ecological effects on postfire tree regeneration. With field data from 143 postfire plots that burned under different conditions, we assessed canopy and surface fire severity, and postfire tree seedling density against prefire outbreak severity. In the green-attack/red stage, several canopy fire-severity measures increased with prefire outbreak severity under moderate burning conditions. Under extreme conditions, few fire-severity measures were related to prefire outbreak severity, and effect sizes were of marginal biological significance. The percentage of tree stems and basal area killed by fire increased with more green-attack vs. red-stage trees (i.e., the earliest stages of outbreak). In the gray stage, by contrast, most fire-severity measures declined with increasing outbreak severity under moderate conditions, and fire severity was unrelated to outbreak severity under extreme burning conditions. Postfire lodgepole pine seedling regeneration was unrelated to prefire outbreak severity in either post-outbreak stage, but increased with prefire serotiny. Results suggest bark beetle outbreaks can affect fire severity in subalpine forests under moderate burning conditions, but have little effect on fire severity under extreme burning conditions when most large wildfires occur in this system. Thus, beetle outbreak severity was moderately linked to fire severity, but the strength and direction of the linkage depended on both endogenous (outbreak stage) and exogenous (fire weather) factors. Closely timed beetle outbreak and fire did not impart compound effects on tree regeneration, suggesting the presence of a canopy seedbank may enhance resilience to their combined effects.


International Journal of Wildland Fire | 2013

Fuel mass and forest structure following stand-replacement fire and post-fire logging in a mixed-evergreen forest

Daniel C. Donato; Joseph B. Fontaine; J. Boone; Kauffman C; W. Douglas; Robinson C; Beverly E. Law

Consequences of bark beetle outbreaks for forest wildfire potential are receiving heightened attention, but little research has considered ecosystems with mixed-severity fire regimes. Such forests are widespread, variable in stand structure, and often fuel limited, suggesting that beetle outbreaks could substantially alter fire potentials. We studied canopy and surface fuels in interior Douglas-fir (Pseudotsuga menziesii v. glauca) forests in Greater Yellowstone, Wyoming, USA, to determine how fuel characteristics varied with time since outbreak of the Douglas-fir beetle (Dendroctonus pseudotsugae). We sampled five stands in each of four outbreak stages, validated for pre-outbreak similarity: green (undisturbed), red (1-3 yr), gray (4-14 yr), and silver (25-30 yr). General linear models were used to compare variation in fuel profiles associated with outbreak to variation associated with the range of stand structures (dense mesic forest to open xeric parkland) characteristic of interior Douglas-fir forest. Beetle outbreak killed 38-83% of basal area within stands, generating a mix of live trees and snags over several years. Canopy fuel load and bulk density began declining in the red stage via needle drop and decreased by approximately 50% by the silver stage. The dead portion of available canopy fuels peaked in the red stage at 41%. After accounting for background variation, there was little effect of beetle outbreak on surface fuels, with differences mainly in herbaceous biomass (50% greater in red stands) and coarse woody fuels (doubled in silver stands). Within-stand spatial heterogeneity of fuels increased with time since outbreak, and surface-to-crown continuity decreased and remained low because of slow/sparse regeneration. Collectively, results suggest reduced fire potentials in post-outbreak stands, particularly for crown fire after the red stage, although abundant coarse fuels in silver stands may increase burn residence time and heat release. Outbreak effects on fuels were comparable to background variation in stand structure. The net effect of beetle outbreak was to shift the structure of mnsic closed-canopy stands toward that of parklands, and to shift xeric parklands toward very sparse woodlands. This study highlights the importance of evaluating outbreak effects in the context of the wide structural variation inherent to many forest types in the absence of beetle disturbance.


Tree-ring Research | 2012

A Method for Surfacing Large Log Cross-Sections for Scanning and Crossdating

Daniel C. Donato; Scott H. Timme

Following severe wildfires, managing fire hazard by removing dead trees (post-fire logging) is an important issue globally. Data informing these management actions are relatively scarce, particularly how fuel loads differ by post-fire logging intensity within different environmental settings. In mixed-evergreen forests of Oregon, USA, we quantified fuel profiles 3–4 years after stand-replacement fire – assessing three post-fire logging intensities (0, 25–75, or >75% basal area cut) across two climatic settings (mesic coastal, drier interior). Stand-replacement fire consumed ~17% of aboveground biomass. Post-fire logging significantly reduced standing dead biomass, with high-intensity treatment leaving a greater proportion (28%) of felled biomass on site compared with moderate-intensity treatment (14%) because of less selective tree felling. A significant relationship between logging intensity and resulting surface fuels (per-hectare increase of 0.4–1.2Mg per square metre of basal area cut) indicated a broadly applicable predictive tool for management. Down wood cover increased by 3–5 times and became more spatially homogeneous after logging. Post-fire logging altered the fuel profile of early-seral stands (standing material removed or transferred, short-term increase in surface fuels, likely reduction in future large fuel accumulation), with moderate-intensity and unlogged treatments yielding surface fuel loads consistent with commonly prescribed levels, and high-intensity treatment resulting in greater potential need for follow-up fuel treatments.


PLOS ONE | 2017

The Use of Mixed Effects Models for Obtaining Low-Cost Ecosystem Carbon Stock Estimates in Mangroves of the Asia-Pacific

Jacob J. Bukoski; Jeremy S. Broadhead; Daniel C. Donato; Daniel Murdiyarso; Timothy G. Gregoire

Abstract We present a method for obtaining a true flat surface on cross-sections of large logs that exceed the width of many belt sanders, to aid in digital scanning and computer-aided ring-width measurement. The method uses a vertical mill that is available in most university machine shops, gradually removing thin layers of wood to achieve a surface that is planar within ca. 0.3-mm precision. We have tested the method on several sizes, shapes, and decay states of log samples and found that it performs well across these variations. Samples can then be directly sanded with medium- to fine-grit sandpaper to achieve a finished surface that lies flat on a scanner plate and shows rings and cell structure with high clarity.

Collaboration


Dive into the Daniel C. Donato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge