Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Carl Hammerand is active.

Publication


Featured researches published by Daniel Carl Hammerand.


Modelling and Simulation in Materials Science and Engineering | 2009

Modeling of graphene?polymer interfacial mechanical behavior using molecular dynamics

Amnaya P. Awasthi; Dimitris C. Lagoudas; Daniel Carl Hammerand

Carbon nanotube (CNT) polymer-matrix composites exhibit promising properties as structural materials for which appropriate constitutive models are sought, to predict their macroscale behavior. The reliability of determining the homogenized response of such materials depends upon the ability to accurately capture the interfacial behavior between the nanotubes and the polymer matrix. In this work, molecular dynamics simulations, using the Consistent Valence Force Field (CVFF) to describe the atomistic interactions, are used to study nanoscale load transfer between polyethylene and a graphene sheet, a model system chosen to characterize the force-separation behavior between CNTs and the polymer matrix. Separation studies are conducted for both opening as well as sliding modes and cohesive zone parameters such as peak traction and energy of separation are evaluated for each mode. Studies are also carried out to investigate the effect of tension and compression on sliding mode separation. Size dependence studies are conducted utilizing different sizes of the computational domain and different boundary conditions, to obtain the representative volume element and connect to continuum level properties. These results set the stage for continuum length-scale micromechanical models which may be used in determining the overall material response, incorporating interfacial phenomena.


Mechanics of Advanced Materials and Structures | 2007

Computational Micromechanics of Clustering and Interphase Effects in Carbon Nanotube Composites

Daniel Carl Hammerand; Gary D. Seidel; Dimitris C. Lagoudas

Computational micromechanical analysis of high-stiffness hollow fiber nanocomposites is performed using the finite element method. The high-stiffness hollow fibers are modeled either directly as isotropic hollow tubes or equivalent transversely isotropic effective solid cylinders with properties computed using a micromechanics based composite cylinders method. Using a representative volume element for clustered high-stiffness hollow fibers embedded in a compliant matrix with the appropriate periodic boundary conditions, the effective elastic properties are obtained from the finite element results. These effective elastic properties are compared to approximate analytical results found using micromechanics methods. The effects of an interphase layer between the high-stiffness hollow fibers and matrix to simulate imperfect load transfer and/or functionalization of the hollow fibers is also investigated and compared to a multi-layer composite cylinders approach. Finally the combined effects of clustering with fiber-matrix interphase regions are studied. The parametric studies performed herein were motivated by and used properties for single-walled carbon nanotubes embedded in an epoxy matrix, and as such are intended to serve as a guide for continuum level representations of such nanocomposites in a multi-scale modelling approach.


Computer Methods in Applied Mechanics and Engineering | 2001

Modeling error and adaptivity in nonlinear continuum mechanics

J. Tinsley Oden; Serge Prudhomme; Daniel Carl Hammerand; Mieczysław Kuczma

In this paper, computable global bounds on errors due to the use of various mathematical models of physical phenomena are derived. The procedure involves identifying a so-called fine model among a class of models of certain events and then using that model as a datum with respect to which coarser models can be compared. The error inherent in a coarse model, compared to the fine datum, can be bounded by residual functionals unambiguously defined by solutions of the coarse model. Whenever there exist hierarchical classes of models in which levels of sophistication of various coarse models can be defined, an adaptive modeling strategy can be implemented to control modeling error. In the present work, the class of models is within those embodied in nonlinear continuum mechanics.


47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference<BR> 14th AIAA/ASME/AHS Adaptive Structures Conference<BR> 7th | 2006

Modeling of Interface Behavior in Carbon Nanotube Composites

Amnaya P. Awasthi; Dimitris C. Lagoudas; Daniel Carl Hammerand

This research focuses on the development of a constitutive model for carbon nanotube polymer composites incorporating nanoscale attributes of the interface between the nanotube and polymer. Carbon nanotube polymer composites exhibit promising properties, as structural materials and the current work will motivate improvement in their load transfer capabilities. Since separation events occur at different length and time scales, the current work also addresses the challenge of multiscale modeling in interpreting inputs at different length and time scales. The nanoscale phase separation phenomena are investigated using molecular dynamics (MD) simulations. The simulations based on MD provide grounds for developing a cohesive zone model for the interface based on laws of thermodynamics.


Archive | 2007

Testing of constitutive models in LAME.

Daniel Carl Hammerand; William Mark Scherzinger

Constitutive models for computational solid mechanics codes are in LAME--the Library of Advanced Materials for Engineering. These models describe complex material behavior and are used in our finite deformation solid mechanics codes. To ensure the correct implementation of these models, regression tests have been created for constitutive models in LAME. A selection of these tests is documented here. Constitutive models are an important part of any solid mechanics code. If an analysis code is meant to provide accurate results, the constitutive models that describe the material behavior need to be implemented correctly. Ensuring the correct implementation of constitutive models is the goal of a testing procedure that is used with the Library of Advanced Materials for Engineering (LAME) (see [1] and [2]). A test suite for constitutive models can serve three purposes. First, the test problems provide the constitutive model developer a means to test the model implementation. This is an activity that is always done by any responsible constitutive model developer. Retaining the test problem in a repository where the problem can be run periodically is an excellent means of ensuring that the model continues to behave correctly. A second purpose of a test suite for constitutive models is that it gives application code developers confidence that the constitutive models work correctly. This is extremely important since any analyst that uses an application code for an engineering analysis will associate a constitutive model in LAME with the application code, not LAME. Therefore, ensuring the correct implementation of constitutive models is essential for application code teams. A third purpose of a constitutive model test suite is that it provides analysts with example problems that they can look at to understand the behavior of a specific model. Since the choice of a constitutive model, and the properties that are used in that model, have an enormous effect on the results of an analysis, providing problems that highlight the behavior of various constitutive models to the engineer can be of great benefit. LAME is currently implemented in the Sierra based solid mechanics codes Adagio [3] and Presto [4]. The constitutive models in LAME are available in both codes. Due to the nature of a transient dynamics code--e.g. Presto--it is difficult to test a constitutive model due to inertia effects that show up in the solution. Therefore the testing of constitutive models is primarily done in Adagio. All of the test problems detailed in this report are run in Adagio. It is the goal of the constitutive model test suite to provide a useful service for the constitutive model developer, application code developer and engineer that uses the application code. Due to the conflicting needs and tight time constraints on solid mechanics code development, no requirements exist for implementing test problems for constitutive models. Model developers are strongly encouraged to provide test problems and document those problems, but given the choice of having a model without a test problem or no model at all, certain requirements must be kept loose. A flexible code development environment, especially with regards to research and development in constitutive modeling, is essential to the success of such an environment. This report provides documentation of a number of tests for the constitutive models in LAME. Each section documents a separate test with a brief description of the model, the test problem and the results. This report is meant to be updated periodically as more test problems are created and put into the test suite.


Archive | 2007

Library of Advanced Materials for Engineering - LAME

Daniel Carl Hammerand; William Mark Scherzinger

Constitutive modeling is an important aspect of computational solid mechanics. Sandia National Laboratories has always had a considerable effort in the development of constitutive models for complex material behavior. However, for this development to be of use the models need to be implemented in our solid mechanics application codes. In support of this important role, the Library of Advanced Materials for Engineering (LAME) has been developed in Engineering Sciences. The library allows for simple implementation of constitutive models by model developers and access to these models by application codes. The library is written in C++ and has a very simple object oriented programming structure. This report summarizes the current status of LAME.


Archive | 2005

Adhesive joint and composites modeling in SIERRA.

Yuki Ohashi; Arthur A. Brown; Daniel Carl Hammerand; Douglas Brian Adolf; Robert S. Chambers; James W. Foulk

Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandias SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.


Other Information: PBD: 1 Feb 2001 | 2001

Modeling Error and Adaptivity in Nonlinear Continuum Mechanics

Daniel Carl Hammerand; J. Tinsley Oden; Serge Prudhomme; Mieczysław Kuczma

In this report, computable global bounds on errors due to the use of various mathematical models of physical phenomena are derived. The procedure involves identifying a so-called fine model among a class of models of certain events and then using that model as a datum with respect to which coarser models can be compared. The error inherent in a coarse model, compared to the fine datum, can be bounded by residual functionals unambiguously defined by solutions of the coarse model. Whenever there exist hierarchical classes of models in which levels of sophistication of various coarse models can be defined, an adaptive modeling strategy can be implemented to control modeling error. In the present work, the class of models is within those embodied in nonlinear continuum mechanics.


Archive | 2007

Constitutive models in LAME.

Daniel Carl Hammerand; William Mark Scherzinger


Polymer | 2010

Modeling the response of monofilament nylon cords with the nonlinear viscoelastic, simplified potential energy clock model

Douglas Adolf; Robert S. Chambers; Daniel Carl Hammerand; Ming-Ya Tang; Kevin Westgate; Jim Gillick; Ihor Skrypnyk

Collaboration


Dive into the Daniel Carl Hammerand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert S. Chambers

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Tinsley Oden

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Serge Prudhomme

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Mieczysław Kuczma

Poznań University of Technology

View shared research outputs
Top Co-Authors

Avatar

Arthur A. Brown

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge