Daniel Cisalpino
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Cisalpino.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Flávio A. Amaral; Daniela Sachs; Vivian V. Costa; Caio T. Fagundes; Daniel Cisalpino; Thiago M. Cunha; Sérgio H. Ferreira; Fernando Q. Cunha; Tarcília Aparecida Silva; Jacques Robert Nicoli; Leda Quercia Vieira; Danielle G. Souza; Mauro M. Teixeira
The ability of an individual to sense pain is fundamental for its capacity to adapt to its environment and to avoid damage. The sensation of pain can be enhanced by acute or chronic inflammation. In the present study, we have investigated whether inflammatory pain, as measured by hypernociceptive responses, was modified in the absence of the microbiota. To this end, we evaluated mechanical nociceptive responses induced by a range of inflammatory stimuli in germ-free and conventional mice. Our experiments show that inflammatory hypernociception induced by carrageenan, lipopolysaccharide, TNF-α, IL-1β, and the chemokine CXCL1 was reduced in germ-free mice. In contrast, hypernociception induced by prostaglandins and dopamine was similar in germ-free or conventional mice. Reduction of hypernociception induced by carrageenan was associated with reduced tissue inflammation and could be reversed by reposition of the microbiota or systemic administration of lipopolysaccharide. Significantly, decreased hypernociception in germ-free mice was accompanied by enhanced IL-10 expression upon stimulation and could be reversed by treatment with an anti-IL-10 antibody. Therefore, these results show that contact with commensal microbiota is necessary for mice to develop inflammatory hypernociception. These findings implicate an important role of the interaction between the commensal microbiota and the host in favoring adaptation to environmental stresses, including those that cause pain.
Journal of Immunology | 2007
Danielle G. Souza; Caio T. Fagundes; Flávio A. Amaral; Daniel Cisalpino; Lirlândia P. Sousa; Angélica T. Vieira; Vanessa Pinho; Jacques Robert Nicoli; Leda Quercia Vieira; Iolanda M. Fierro; Mauro M. Teixeira
The appropriate development of an inflammatory response is central for the ability of a host to deal with any infectious insult. However, excessive, misplaced, or uncontrolled inflammation may lead to acute or chronic diseases. The microbiota plays an important role in the control of inflammatory responsiveness. In this study, we investigated the role of lipoxin A4 and annexin-1 for the IL-10-dependent inflammatory hyporesponsiveness observed in germfree mice. Administration of a 15-epi-lipoxin A4 analog or an annexin-1-derived peptide to conventional mice prevented tissue injury, TNF-α production, and lethality after intestinal ischemia/reperfusion. This was associated with enhanced IL-10 production. Lipoxin A4 and annexin-1 failed to prevent reperfusion injury in IL-10-deficient mice. In germfree mice, there was enhanced expression of both lipoxin A4 and annexin-1. Blockade of lipoxin A4 synthesis with a 5-lipoxygenase inhibitor or Abs against annexin-1 partially prevented IL-10 production and this was accompanied by partial reversion of inflammatory hyporesponsiveness in germfree mice. Administration of BOC-1, an antagonist of ALX receptors (at which both lipoxin A4 and annexin-1 act), or simultaneous administration of 5-lipoxygenase inhibitor and anti-annexin-1 Abs, was associated with tissue injury, TNF-α production, and lethality similar to that found in conventional mice. Thus, our data demonstrate that inflammatory responsiveness is tightly controlled by the presence of the microbiota and that the innate capacity of germfree mice to produce IL-10 is secondary to their endogenous greater ability to produce lipoxin A4 and annexin-1.
American Journal of Respiratory Cell and Molecular Biology | 2009
Remo Castro Russo; Rodrigo Guabiraba; Cristiana C. Garcia; Lucíola S. Barcelos; Ester Roffê; Adriano L.S. Souza; Flávio A. Amaral; Daniel Cisalpino; Geovanni Dantas Cassali; Andrea Doni; Riccardo Bertini; Mauro M. Teixeira
Pulmonary fibrosis is characterized by chronic inflammation and excessive collagen deposition. Neutrophils are thought to be involved in the pathogenesis of lung fibrosis. We hypothesized that CXCR2-mediated neutrophil recruitment is essential for the cascade of events leading to bleomycin-induced pulmonary fibrosis. CXCL1/KC was detected as early as 6 hours after bleomycin instillation and returned to basal levels after Day 8. Neutrophils were detected in bronchoalveolar lavage and interstitium from 12 hours and peaked at Day 8 after instillation. Treatment with the CXCR2 receptor antagonist, DF2162, reduced airway neutrophil transmigration but led to an increase of neutrophils in lung parenchyma. There was a significant reduction in IL-13, IL-10, CCL5/RANTES, and active transforming growth factor (TGF)-beta(1) levels, but not on IFN-gamma and total TGF-beta(1,) and enhanced granulocyte macrophage-colony-stimulating factor production in DF2162-treated animals. Notably, treatment with the CXCR2 antagonist led to an improvement of the lung pathology and reduced collagen deposition. Using a therapeutic schedule, DF2162 administered from Days 8 to 16 after bleomycin reduced pulmonary fibrosis and levels of active TGF-beta(1) and IL-13. DF2162 treatment reduced bleomycin-induced expression of von Willebrand Factor, a marker of angiogenesis, in the lung. In vitro, DF2162 reduced the angiogenic activity of IL-8 on human umbilical vein endothelial cells. In conclusion, we show that CXCR2 plays an important role in mediating fibrosis after bleomycin instillation. The compound blocks angiogenesis and the production of pro-angiogenic cytokines, and decreases IL-8-induced endothelial cell activation. An effect on neutrophils does not appear to account for the major effects of the blockade of CXCR2 in the system.
Hepatology | 2015
Pedro Marques; André G. Oliveira; Rafaela Vaz Sousa Pereira; Bruna Araújo David; Lindisley Ferreira Gomides; Adriana Machado Saraiva; Daniele Araújo Pires; Júlia Tosta Novaes; Daniel de Oliveira Patricio; Daniel Cisalpino; Zélia Menezes-Garcia; W. Matthew Leevy; Sarah Chapman; GermánArturo Mahecha; Rafael Elias Marques; Rodrigo Guabiraba; Vicente de Paulo Martins; Danielle G. Souza; Daniel Santos Mansur; Mauro Martins Teixeira; M. Fatima Leite; Gustavo B. Menezes
Drug‐induced liver injury (DILI) is an important cause of acute liver failure, with limited therapeutic options. During DILI, oncotic necrosis with concomitant release and recognition of intracellular content amplifies liver inflammation and injury. Among these molecules, self‐DNA has been widely shown to trigger inflammatory and autoimmune diseases; however, whether DNA released from damaged hepatocytes accumulates into necrotic liver and the impact of its recognition by the immune system remains elusive. Here we show that treatment with two different hepatotoxic compounds (acetaminophen and thioacetamide) caused DNA release into the hepatocyte cytoplasm, which occurred in parallel with cell death in vitro. Administration of these compounds in vivo caused massive DNA deposition within liver necrotic areas, together with an intravascular DNA coating. Using confocal intravital microscopy, we revealed that liver injury due to acetaminophen overdose led to a directional migration of neutrophils to DNA‐rich areas, where they exhibit an active patrolling behavior. DNA removal by intravenous DNASE1 injection or ablation of Toll‐like receptor 9 (TLR9)‐mediated sensing significantly reduced systemic inflammation, liver neutrophil recruitment, and hepatotoxicity. Analysis of liver leukocytes by flow cytometry revealed that emigrated neutrophils up‐regulated TLR9 expression during acetaminophen‐mediated necrosis, and these cells sensed and reacted to extracellular DNA by activating the TLR9/NF‐κB pathway. Likewise, adoptive transfer of wild‐type neutrophils to TLR9−/− mice reversed the hepatoprotective phenotype otherwise observed in TLR9 absence. Conclusion: Hepatic DNA accumulation is a novel feature of DILI pathogenesis. Blockage of DNA recognition by the innate immune system may constitute a promising therapeutic venue. (Hepatology 2015;61:348–360)
PLOS Neglected Tropical Diseases | 2011
Caio T. Fagundes; Vivian V. Costa; Daniel Cisalpino; Flávio A. Amaral; Patrícia R.S. Souza; Rafael S. de Souza; Bernhard Ryffel; Leda Quercia Vieira; Tarcília Aparecida Silva; Alena Atrasheuskaya; George Ignatyev; Lirlândia P. Sousa; Danielle G. Souza; Mauro M. Teixeira
Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1–4). Severe dengue infection in humans is characterized by thrombocytopenia, increased vascular permeability, hemorrhage and shock. However, there is little information about host response to DENV infection. Here, mechanisms accounting for IFN-γ production and effector function during dengue disease were investigated in a murine model of DENV-2 infection. IFN-γ expression was greatly increased after infection of mice and its production was preceded by increase in IL-12 and IL-18 levels. In IFN-γ−/− mice, DENV-2-associated lethality, viral loads, thrombocytopenia, hemoconcentration, and liver injury were enhanced, when compared with wild type-infected mice. IL-12p40−/− and IL-18−/− infected-mice showed decreased IFN-γ production, which was accompanied by increased disease severity, higher viral loads and enhanced lethality. Blockade of IL-18 in infected IL-12p40−/− mice resulted in complete inhibition of IFN-γ production, greater DENV-2 replication, and enhanced disease manifestation, resembling the response seen in DENV-2-infected IFN-γ−/− mice. Reduced IFN-γ production was associated with diminished Nitric Oxide-synthase 2 (NOS2) expression and NOS2−/− mice had elevated lethality, more severe disease evolution and increased viral load after DENV-2 infection. Therefore, IL-12/IL-18-induced IFN-γ production and consequent NOS2 induction are of major importance to host resistance against DENV infection.
Journal of Immunology | 2014
Canesso Mc; Angélica T. Vieira; Castro Tb; Schirmer Bg; Daniel Cisalpino; Flaviano S. Martins; Milene Alvarenga Rachid; Nicoli; Mauro M. Teixeira; Lucíola S. Barcelos
The commensal microbiota has a high impact on health and disease by modulating the development and homeostasis of host immune system. Immune cells are involved in virtually every aspect of the wound repair process; however, the impact of commensal microbiota on skin wound healing is largely unknown. In this study, we evaluated the influence of commensal microbiota on tissue repair of excisional skin wounds by using germ-free (GF) Swiss mice. We observed that macroscopic wound closure rate is accelerated in the absence of commensal microbiota. Accordantly, histologically assessed wound epithelization was accelerated in GF in comparison with conventional (CV) Swiss mice. The wounds of GF mice presented a significant decrease in neutrophil accumulation and an increase in mast cell and macrophage infiltration into wounds. Interestingly, alternatively activated healing macrophage-related genes were highly expressed in the wound tissue of GF mice. Moreover, levels of the anti-inflammatory cytokine IL-10, the angiogenic growth factor VEGF and angiogenesis were higher in the wound tissue of those mice. Conversely, scarring and levels of the profibrogenic factor TGF-β1 were greatly reduced in GF mice wounded skin when compared with CV mice. Of note, conventionalization of GF mice with CV microbiota restored wound closure rate, neutrophil and macrophage accumulation, cytokine production, and scarring to the same extent as CV mice. Overall, our findings suggest that, in the absence of any contact with microbiota, skin wound healing is accelerated and scarless, partially because of reduced accumulation of neutrophils, increased accumulation of alternatively activated healing macrophages, and better angiogenesis at wound sites.
PLOS Neglected Tropical Diseases | 2012
Vivian V. Costa; Caio T. Fagundes; Deborah F. Valadão; Daniel Cisalpino; Ana Carolina Fialho Dias; Kátia D. Silveira; Lucas M. Kangussu; Thiago V. Ávila; Maria Rosa Q. Bonfim; Daniela Bonaventura; Tarcília Aparecida Silva; Lirlândia P. Sousa; Milene Alvarenga Rachid; Leda Quercia Vieira; Gustavo B. Menezes; Ana Paula; Alena Atrasheuskaya; George Ignatyev; Mauro M. Teixeira; Danielle G. Souza
There are few animal models of dengue infection, especially in immunocompetent mice. Here, we describe alterations found in adult immunocompetent mice inoculated with an adapted Dengue virus (DENV-3) strain. Infection of mice with the adapted DENV-3 caused inoculum-dependent lethality that was preceded by several hematological and biochemical changes and increased virus dissemination, features consistent with severe disease manifestation in humans. IFN-γ expression increased after DENV-3 infection of WT mice and this was preceded by increase in expression of IL-12 and IL-18. In DENV-3-inoculated IFN-γ−/− mice, there was enhanced lethality, which was preceded by severe disease manifestation and virus replication. Lack of IFN-γ production was associated with diminished NO-synthase 2 (NOS2) expression and higher susceptibility of NOS2−/− mice to DENV-3 infection. Therefore, mechanisms of protection to DENV-3 infection rely on IFN-γ-NOS2-NO-dependent control of viral replication and of disease severity, a pathway showed to be relevant for resistance to DENV infection in other experimental and clinical settings. Thus, the model of DENV-3 infection in immunocompetent mice described here represents a significant advance in animal models of severe dengue disease and may provide an important tool to the elucidation of immunopathogenesis of disease and of protective mechanisms associated with infection.
PLOS ONE | 2013
Kátia Daniela da Silveira; Lívia Corrêa Barroso; Angélica T. Vieira; Daniel Cisalpino; Cristiano Xavier Lima; Michael Bader; Rosa Maria Esteves Arantes; Robson A.S. Santos; Ana Cristina Simões-e-Silva; Mauro M. Teixeira
Angiotensin-(1–7) [Ang-(1–7)] is a biologically active heptapeptide that may counterbalance the physiological actions of angiotensin II (Ang II) within the renin-angiotensin system (RAS). Here, we evaluated whether activation of the Mas receptor with the oral agonist, AVE 0991, would have renoprotective effects in a model of adriamycin (ADR)-induced nephropathy. We also evaluated whether the Mas receptor contributed for the protective effects of treatment with AT1 receptor blockers. ADR (10 mg/kg) induced significant renal injury and dysfunction that was maximal at day 14 after injection. Treatment with the Mas receptor agonist AVE 0991 improved renal function parameters, reduced urinary protein loss and attenuated histological changes. Renoprotection was associated with reduction in urinary levels of TGF-β. Similar renoprotection was observed after treatment with the AT1 receptor antagonist, Losartan. AT1 and Mas receptor mRNA levels dropped after ADR administration and treatment with losartan reestablished the expression of Mas receptor and increased the expression of ACE2. ADR-induced nephropathy was similar in wild type (Mas+/+) and Mas knockout (Mas −/−) mice, suggesting there was no endogenous role for Mas receptor activation. However, treatment with Losartan was able to reduce renal injury only in Mas+/+, but not in Mas −/− mice. Therefore, these findings suggest that exogenous activation of the Mas receptor protects from ADR-induced nephropathy and contributes to the beneficial effects of AT1 receptor blockade. Medications which target specifically the ACE2/Ang-(1–7)/Mas axis may offer new therapeutic opportunities to treat human nephropathies.
Molecular Oral Microbiology | 2013
Mila Fernandes Moreira Madeira; Celso Martins Queiroz-Junior; Daniel Cisalpino; Silvia Maria Cordeiro Werneck; H. Kikuchi; O. Fujise; Bernhard Ryffel; Tarcília Aparecida Silva; Mauro M. Teixeira; Danielle G. Souza
Aggregatibacter actinomycetemcomitans is a Gram-negative bacteria highly associated with localized aggressive periodontitis. The recognition of microbial factors, such as lipopolysaccharide from A. actinomycetemcomitans ((Aa)LPS), in the oral environment is made mainly by surface receptors known as Toll-like receptors (TLR). TLR4 is the major LPS receptor. This interaction leads to the production of inflammatory cytokines by myeloid differentiation primary-response protein 88 (MyD88) -dependent and -independent pathways, which may involve the adaptor Toll/interleukin-1 receptor-domain-containing adaptor inducing interferon-β (TRIF). The aim of this study was to assess the involvement of MyD88 in alveolar bone loss induced by (Aa)LPS in mice. C57BL6/J wild-type (WT) mice, MyD88, TRIF or TRIF/MyD88 knockout mice received 10 injections of Aa LPS strain FDC Y4 (5 μg in 3 μl), in the palatal gingival tissue of the right first molar, every 48 h. Phosphate-buffered saline was injected in the opposite side and used as control. Animals were sacrificed 24 h after the 10th injection and the maxillae were removed for macroscopic and biochemical analyses. The injections of Aa LPS induced significant alveolar bone loss in WT mice. In the absence of MyD88 or TRIF/MyD88 no bone loss induced by (Aa)LPS was observed. In contrast, responses in TRIF(-/-) mice were similar to those in WT mice. Diminished bone loss in the absence of MyD88 was associated with fewer TRAP-positive cells and increased expression of osteoblast markers, RUNX2 and osteopontin. There was also reduced tumor necrosis factor-α production in MyD88(-/-) mice. There was less osteoclast differentiation of hematopoietic bone marrow cells from MyD88(-/-) mice after (Aa)LPS stimulation. Hence, the signaling through MyD88 is pivotal for (Aa)LPS-induced osteoclast formation and alveolar bone loss.
Obesity | 2014
Zélia Menezes-Garcia; Marina C. Oliveira; Renata Lacerda Lima; Frederico M. Soriani; Daniel Cisalpino; Leida Maria Botion; Mauro M. Teixeira; Danielle G. Souza; Adaliene Versiani Matos Ferreira
The role of platelet‐activating factor (PAF) on diet‐induced inflammatory and metabolic dysfunction is unknown. The effects of diet‐induced metabolic and inflammatory dysfunction in mice with deletion of the PAF receptor (PAFR−/−) were evaluated in this study.