Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Dumitru Banciu is active.

Publication


Featured researches published by Daniel Dumitru Banciu.


Histochemistry and Cell Biology | 2015

Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels

Sanda Maria Cretoiu; Beatrice Mihaela Radu; Adela Banciu; Daniel Dumitru Banciu; Dragos Cretoiu; Laura Cristina Ceafalan; Laurentiu M. Popescu

Recently, telocytes (TCs) were described as a new cell type in the interstitial space of many organs, including myometrium. TCs are cells with very long, distinctive extensions named telopodes (Tps). It is suggested that TCs play a major role in intercellular signaling, as well as in morphogenesis, especially in morphogenetic bioelectrical signaling. However, TC plasma membrane is yet unexplored regarding the presence and activity of ion channels and pumps. Here, we used a combination of in vitro immunofluorescence and patch-clamp technique to characterize T-type calcium channels in TCs. Myometrial TCs were identified in cell culture (non-pregnant and pregnant myometrium) as cells having very long Tps and which were positive for CD34 and platelet-derived growth factor receptor-α. Immunofluorescence analysis of the subfamily of T-type (transient) calcium channels CaV3.1 and CaV3.2 presence revealed the expression of these ion channels on the cell body and Tps of non-pregnant and pregnant myometrium TCs. The expression in TCs from the non-pregnant myometrium is less intense, being confined to the cell body for CaV3.2, while CaV3.1 was expressed both on the cell body and in Tps. Moreover, the presence of T-type calcium channels in TCs from non-pregnant myometrium is also confirmed by applying brief ramp depolarization protocols. In conclusion, our results show that T-type calcium channels are present in TCs from human myometrium and could participate in the generation of endogenous bioelectric signals responsible for the regulation of the surrounding cell behavior, during pregnancy and labor.


International Journal of Molecular Sciences | 2017

Calcium Signaling in Interstitial Cells: Focus on Telocytes

Beatrice Mihaela Radu; Adela Banciu; Daniel Dumitru Banciu; Mihai Radu; Dragos Cretoiu; Sanda Maria Cretoiu

In this review, we describe the current knowledge on calcium signaling pathways in interstitial cells with a special focus on interstitial cells of Cajal (ICCs), interstitial Cajal-like cells (ICLCs), and telocytes. In detail, we present the generation of Ca2+ oscillations, the inositol triphosphate (IP3)/Ca2+ signaling pathway and modulation exerted by cytokines and vasoactive agents on calcium signaling in interstitial cells. We discuss the physiology and alterations of calcium signaling in interstitial cells, and in particular in telocytes. We describe the physiological contribution of calcium signaling in interstitial cells to the pacemaking activity (e.g., intestinal, urinary, uterine or vascular pacemaking activity) and to the reproductive function. We also present the pathological contribution of calcium signaling in interstitial cells to the aortic valve calcification or intestinal inflammation. Moreover, we summarize the current knowledge of the role played by calcium signaling in telocytes in the uterine, cardiac and urinary physiology, and also in various pathologies, including immune response, uterine and cardiac pathologies.


Scientific Reports | 2017

All muscarinic acetylcholine receptors (M 1 -M 5 ) are expressed in murine brain microvascular endothelium

Beatrice Mihaela Radu; Antonio Osculati; Eda Suku; Adela Banciu; Grygoriy Tsenov; Flavia Merigo; Marzia Di Chio; Daniel Dumitru Banciu; Cristina Tognoli; Petr Kačer; Alejandro Giorgetti; Mihai Radu; Giuseppe Bertini; Paolo F. Fabene

Clinical and experimental studies indicate that muscarinic acetylcholine receptors are potential pharmacological targets for the treatment of neurological diseases. Although these receptors have been described in human, bovine and rat cerebral microvascular tissue, a subtype functional characterization in mouse brain endothelium is lacking. Here, we show that all muscarinic acetylcholine receptors (M1-M5) are expressed in mouse brain microvascular endothelial cells. The mRNA expression of M2, M3, and M5 correlates with their respective protein abundance, but a mismatch exists for M1 and M4 mRNA versus protein levels. Acetylcholine activates calcium transients in brain endothelium via muscarinic, but not nicotinic, receptors. Moreover, although M1 and M3 are the most abundant receptors, only a small fraction of M1 is present in the plasma membrane and functions in ACh-induced Ca2+ signaling. Bioinformatic analyses performed on eukaryotic muscarinic receptors demonstrate a high degree of conservation of the orthosteric binding site and a great variability of the allosteric site. In line with previous studies, this result indicates muscarinic acetylcholine receptors as potential pharmacological targets in future translational studies. We argue that research on drug development should especially focus on the allosteric binding sites of the M1 and M3 receptors.


International Journal of Molecular Sciences | 2018

Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium

Adela Banciu; Daniel Dumitru Banciu; Cosmin Catalin Mustaciosu; Mihai Radu; Dragos Cretoiu; Junjie Xiao; Sanda Maria Cretoiu; Nicolae Suciu; Beatrice Mihaela Radu

Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine myometrium and their gene expression regulation by beta-estradiol in pregnant conditions. Further exploration of the calcium signaling in TCs and its modulation by estrogen hormones will contribute to the understanding of labor and pregnancy mechanisms and to the development of effective strategies to reduce the risk of premature birth.


Archive | 2017

Circulating Exosomes in Cardiovascular Diseases

Yihua Bei; Ting Chen; Daniel Dumitru Banciu; Dragos Cretoiu; Junjie Xiao

Circulating exosomes could arrive in distant tissues via blood circulation, thus directly communicating with target cells and rapidly regulating intracellular signalings. Circulating exosomes and exosomal cargos are critically involved in cardiovascular pathophysiology, such as cardiomyocyte hypertrophy, apoptosis, and angiogenesis. Circulating exosomes enriched with various types of biological molecules can be changed not only in the number but also in the composite cargos upon cardiac injury, such as myocardial infarction, myocardial ischemia reperfusion injury, atherosclerosis, hypertension, and sepsis cardiomyopathy, which may further influence cardiomyocyte function and contribute to the pathogenesis of cardiovascular diseases. Thus, exosome-based therapeutic strategy may be used to attenuate myocardial injury and promote cardiac regeneration and repair. Also, more preclinical and clinical studies would be needed to investigate the potential of circulating exosomes as biomarkers for the diagnosis, risk stratification, and prognosis of cardiovascular diseases.


Advances in Protein Chemistry | 2016

Acid-sensing ion channels as potential pharmacological targets in peripheral and central nervous system diseases

Beatrice Mihaela Radu; Adela Banciu; Daniel Dumitru Banciu; Mihai Radu

Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.


Advances in Experimental Medicine and Biology | 2016

Electrophysiological Features of Telocytes.

Daniel Dumitru Banciu; Adela Banciu; Beatrice Mihaela Radu

Telocytes (TCs) are interstitial cells described in multiple structures, including the gastrointestinal tract, respiratory tract, urinary tract, uterus, and heart. Several studies have indicated the possibility that TCs are involved in the pacemaker potential in these organs. It is supposed that TCs are interacting with the neighboring muscular cells and their network contributes to the initiation and propagation of the electrical potentials. In order to understand the contribution of TCs to various excitability mechanisms, it is necessary to analyze the plasma membrane proteins (e.g., ion channels) functionally expressed in these cells. So far, potassium, calcium, and chloride currents, but not sodium currents, have been described in TCs in primary cell culture from different tissues. Moreover, TCs have been described as sensors for mechanical stimuli (e.g., contraction, extension, etc.). In conclusion, TCs might play an essential role in gastrointestinal peristalsis, in respiration, in pregnant uterus contraction, or in miction, but further highlighting studies are necessary to understand the molecular mechanisms and the cell-cell interactions by which TCs contribute to the tissue excitability and pacemaker potentials initiation/propagation.


Lasers in Medical Science | 2014

Near-infrared low-level laser stimulation of telocytes from human myometrium

Razvan-Alexandru Campeanu; Beatrice Mihaela Radu; Sanda Maria Cretoiu; Daniel Dumitru Banciu; Adela Banciu; Dragos Cretoiu; Laurentiu M. Popescu


Seminars in Cell & Developmental Biology | 2017

Telocytes heterogeneity: from cellular morphology to functional evidence

Dragos Cretoiu; Beatrice Mihaela Radu; Adela Banciu; Daniel Dumitru Banciu; Sanda Maria Cretoiu


Cell Biochemistry and Biophysics | 2014

Advanced Type 1 Diabetes is Associated with ASIC Alterations in Mouse Lower Thoracic Dorsal Root Ganglia Neurons

Beatrice Mihaela Radu; Diana Ionela Dumitrescu; Adela Marin; Daniel Dumitru Banciu; Adina Daniela Iancu; Tudor Selescu; Mihai Radu

Collaboration


Dive into the Daniel Dumitru Banciu's collaboration.

Top Co-Authors

Avatar

Adela Banciu

University of Bucharest

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dragos Cretoiu

Carol Davila University of Medicine and Pharmacy

View shared research outputs
Top Co-Authors

Avatar

Sanda Maria Cretoiu

Carol Davila University of Medicine and Pharmacy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Potolea

University of Bucharest

View shared research outputs
Top Co-Authors

Avatar

Laurentiu M. Popescu

Carol Davila University of Medicine and Pharmacy

View shared research outputs
Top Co-Authors

Avatar

Ting Chen

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge