Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel E. Giammar is active.

Publication


Featured researches published by Daniel E. Giammar.


Water Research | 2011

Effects of water chemistry on arsenic removal from drinking water by electrocoagulation

Wei Wan; Troy J. Pepping; Tuhin Banerji; Sanjeev Chaudhari; Daniel E. Giammar

Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Uranium redox transition pathways in acetate-amended sediments

John R. Bargar; Kenneth H. Williams; Kate M. Campbell; Philip E. Long; Joanne E. Stubbs; ElenaI I. Suvorova; Juan S. Lezama-Pacheco; Daniel S. Alessi; Malgorzata Alicja Stylo; Samuel M. Webb; James A. Davis; Daniel E. Giammar; Lisa Y. Blue; Rizlan Bernier-Latmani

Redox transitions of uranium [from U(VI) to U(IV)] in low-temperature sediments govern the mobility of uranium in the environment and the accumulation of uranium in ore bodies, and inform our understanding of Earth’s geochemical history. The molecular-scale mechanistic pathways of these transitions determine the U(IV) products formed, thus influencing uranium isotope fractionation, reoxidation, and transport in sediments. Studies that improve our understanding of these pathways have the potential to substantially advance process understanding across a number of earth sciences disciplines. Detailed mechanistic information regarding uranium redox transitions in field sediments is largely nonexistent, owing to the difficulty of directly observing molecular-scale processes in the subsurface and the compositional/physical complexity of subsurface systems. Here, we present results from an in situ study of uranium redox transitions occurring in aquifer sediments under sulfate-reducing conditions. Based on molecular-scale spectroscopic, pore-scale geochemical, and macroscale aqueous evidence, we propose a biotic–abiotic transition pathway in which biomass-hosted mackinawite (FeS) is an electron source to reduce U(VI) to U(IV), which subsequently reacts with biomass to produce monomeric U(IV) species. A species resembling nanoscale uraninite is also present, implying the operation of at least two redox transition pathways. The presence of multiple pathways in low-temperature sediments unifies apparently contrasting prior observations and helps to explain sustained uranium reduction under disparate biogeochemical conditions. These findings have direct implications for our understanding of uranium bioremediation, ore formation, and global geochemical processes.


Environmental Science & Technology | 2013

Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

Zimeng Wang; Sung Woo Lee; Jeffrey G. Catalano; Juan S. Lezama-Pacheco; John R. Bargar; Bradley M. Tebo; Daniel E. Giammar

The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.


Environmental Science & Technology | 2012

Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate.

Abhas Singh; Jeffrey G. Catalano; Kai-Uwe Ulrich; Daniel E. Giammar

The molecular-scale immobilization mechanisms of uranium uptake in the presence of phosphate and goethite were examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. Wet chemistry data from U(VI)-equilibrated goethite suspensions at pH 4-7 in the presence of ~100 μM total phosphate indicated changes in U(VI) uptake mechanisms from adsorption to precipitation with increasing total uranium concentrations and with increasing pH. EXAFS analysis revealed that the precipitated U(VI) had a structure consistent with the meta-autunite group of solids. The adsorbed U(VI), in the absence of phosphate at pH 4-7, formed bidentate edge-sharing, ≡ Fe(OH)(2)UO(2), and bidentate corner-sharing, (≡ FeOH)(2)UO(2), surface complexes with respective U-Fe coordination distances of ~3.45 and ~4.3 Å. In the presence of phosphate and goethite, the relative amounts of precipitated and adsorbed U(VI) were quantified using linear combinations of the EXAFS spectra of precipitated U(VI) and phosphate-free adsorbed U(VI). A U(VI)-phosphate-Fe(III) oxide ternary surface complex is suggested as the dominant species at pH 4 and total U(VI) of 10 μM or less on the basis of the linear combination fitting, a P shell indicated by EXAFS, and the simultaneous enhancement of U(VI) and phosphate uptake on goethite. A structural model for the ternary surface complex was proposed that included a single phosphate shell at ~3.6 Å (U-P) and a single iron shell at ~4.3 Å (U-Fe). While the data can be explained by a U-bridging ternary surface complex, (≡ FeO)(2)UO(2)PO(4), it is not possible to statistically distinguish this scenario from one with P-bridging complexes also present.


Environmental Science & Technology | 2013

Relative Reactivity of Biogenic and Chemogenic Uraninite and Biogenic Noncrystalline U(IV)

José M. Cerrato; Matthew N. Ashner; Daniel S. Alessi; Juan S. Lezama-Pacheco; Rizlan Bernier-Latmani; John R. Bargar; Daniel E. Giammar

Aqueous chemical extractions and X-ray absorption spectroscopy (XAS) analyses were conducted to investigate the reactivity of chemogenic uraninite, nanoparticulate biogenic uraninite, and biogenic monomeric U(IV) species. The analyses were conducted in systems containing a total U concentration that ranged from 1.48 to 2.10 mM. Less than 0.02% of the total U was released to solution in extractions that targeted water-soluble and ion exchangeable fractions. Less than 5% of the total U was solubilized via complexation with a 0.1 M solution of NaF. Greater than 90% of the total U was extracted from biogenic uraninite and monomeric U(IV) after 6 h of reaction in an oxidizing solution of 50 mM K2S2O8. Additional oxidation experiments with lower concentrations (2 mM and 10 mM) of K2S2O8 and 8.2 mg L(-1) dissolved oxygen suggested that monomeric U(IV) species are more labile than biogenic uraninite; chemogenic uraninite was much less susceptible to oxidation than either form of biogenic U(IV). These results suggest that noncrystalline forms of U(IV) may be more labile than uraninite in subsurface environments. This work helps fill critical gaps in our understanding of the behavior of solid-associated U(IV) species in bioremediated sites and natural uranium ore deposits.


Water Research | 2008

Effects of water chemistry and flow rate on arsenate removal by adsorption to an iron oxide-based sorbent

Hui Zeng; Maiko Arashiro; Daniel E. Giammar

Arsenate removal from water using an iron oxide-based sorbent was investigated to determine the optimal operating conditions and the influence of water composition on treatment efficiency. The novel sorbent with a high surface area was studied in flow-through column experiments conducted at different flow rates to quantify the effect of empty bed contact time (EBCT) on treatment performance. Arsenic removal efficiency declined with decreasing EBCT. Arsenic breakthrough curves at different EBCT values were successfully simulated with a pore and surface diffusion model (PSDM). Surface diffusion was the dominant intraparticle mass transfer process. The effect of water composition on arsenic removal efficiency was evaluated by conducting experiments with ultrapure water, ultrapure water with either phosphate or silica, and a synthetic groundwater that contained both phosphate and silica. Silica was more inhibitory than phosphate, and the silica in synthetic groundwater controlled the arsenic removal efficiency.


Water Research | 2011

Effects of flow and water chemistry on lead release rates from pipe scales

Yanjiao Xie; Daniel E. Giammar

Lead release from pipe scales was investigated under different water compositions, stagnation times, and flow regimes. Pipe scales containing PbO(2) and hydrocerussite (Pb(3)(OH)(2)(CO(3))(2)) were developed on lead pipes by conditioning the pipes with water containing free chlorine for eight months. Water chemistry and the composition of the pipe scales are two key factors affecting lead release from pipe scales. The water rarely reached equilibrium with pipe scales within one day, which makes solid-water contact time and corrosion product dissolution rates the controlling factors of lead concentrations for the conditions tested. Among five water compositions studied, a solution with orthophosphate had the lowest dissolved lead release rate and highest particulate lead release rate. Free chlorine also decreased the dissolved lead release rate at stagnant conditions. Water flow increased rates of release of both dissolved and particulate lead by accelerating the mass transfer of lead out of the porous pipe scales and by physically destabilizing pipe scales. Dissolved lead comprised the majority of the lead released at both stagnant and laminar flow conditions.


Environmental Science & Technology | 2013

Mass action expressions for bidentate adsorption in surface complexation modeling: theory and practice.

Zimeng Wang; Daniel E. Giammar

The inclusion of multidentate adsorption reactions has improved the ability of surface complexation models (SCM) to predict adsorption to mineral surfaces, but variation in the mass action expression for these reactions has caused persistent ambiguity and occasional mishandling. The principal differences are the exponent (α) for the activity of available surface sites and the inclusion of surface site activity on a molar concentration versus fraction basis. Exemplified by bidentate surface complexation, setting α at two within the molar-based framework will cause critical errors in developing a self-consistent model. Despite the publication of several theoretical discussions regarding appropriate approaches, mishandling and confusion has persisted in the model applications involving multidentate surface complexes. This review synthesizes the theory of modeling multidentate surface complexes in a style designed to enable improvements in SCM practice. The implications of selecting an approach for multidentate SCM are illustrated with a previously published data set on U(VI) adsorption to goethite. To improve the translation of theory into improved practice, the review concludes with suggestions for handling multidentate reactions and publishing results that can avoid ambiguity or confusion. Although most discussion is exemplified by the generic bidentate case, the general issues discussed are relevant to higher denticity adsorption.


Water Research | 2012

Impact of galvanic corrosion on lead release from aged lead service lines

Yin Wang; He Jing; Vrajesh S. Mehta; Gregory Welter; Daniel E. Giammar

Partial lead service line replacement (PLSLR) may be performed when tap water lead concentrations exceed the action level and in association with water main replacement or other maintenance. Partially replacing lead pipes with copper tubing can create a galvanic couple if the lead and copper are connected by a metal coupling, which can potentially enhance lead release by galvanic corrosion. The effect of two types of couplings, brass and plastic, on lead release after a simulated PLSLR was investigated in a set of laboratory-scale experiments. Experiments were conducted in a recirculation flow mode with intermittent stagnation periods using aged lead pipes harvested from Providence, RI. Release of both dissolved and particulate lead was higher for the brass-coupled systems than for the plastic-coupled systems, and galvanic corrosion was the primary cause of significant particulate lead release from the brass-coupled systems. For brass-coupled systems, longer stagnation times resulted in dramatically more release of particulate lead. Sampling of different volumes following stagnation showed that lead release for the brass-coupled systems was locally much higher in the region closest to the coupling. The impact of galvanic corrosion persisted for the six weeks of the experiment.


Journal of Colloid and Interface Science | 2015

Effects of pH, dissolved oxygen, and aqueous ferrous iron on the adsorption of arsenic to lepidocrocite

Lin Wang; Daniel E. Giammar

The adsorption of arsenic to iron oxyhydroxides strongly depends on water chemistry. Iron(III) oxyhydroxides can also participate in the oxidation of As(III) to As(V), which changes arsenics toxicity and adsorption behavior. As(III) and As(V) adsorption to lepidocrocite (γ-FeOOH) were examined in batch experiments that explored the effects of lepidocrocite dose, pH, availability of dissolved oxygen, and the presence of aqueous Fe(II) on adsorption. Lepidocrocite is an iron oxyhydroxide found in soils, and it is one of the major products of iron electrocoagulation for water treatment. A surface complexation model was able to describe the adsorption of both As(III) and As(V) to lepidocrocite over a broad range of conditions. The concentration and oxidation states of arsenic in solution were measured over the course of the reactions. At both oxic and anoxic conditions, As(III) was oxidized to As(V) in systems that contained lepidocrocite together with Fe(II); this oxidation led to overall enhanced arsenic adsorption at near neutral pH. With oxygen the pH-dependent generation of oxidants from the Fenton reaction drove the As(III) oxidation. In the absence of oxygen the As(III) was probably oxidized by Fe(III) in lepidocrocite that had become more reactive upon reaction with Fe(II).

Collaboration


Dive into the Daniel E. Giammar's collaboration.

Top Co-Authors

Avatar

John R. Bargar

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rizlan Bernier-Latmani

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Kai-Uwe Ulrich

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Harish Veeramani

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Jeffrey G. Catalano

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zimeng Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip E. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Elena I. Suvorova

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge