Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey G. Catalano is active.

Publication


Featured researches published by Jeffrey G. Catalano.


Science | 2014

Ancient Aqueous Environments at Endeavour Crater, Mars

Raymond E. Arvidson; Steven W. Squyres; James F. Bell; Jeffrey G. Catalano; B. C. Clark; Larry S. Crumpler; P. A. de Souza; Alberto G. Fairén; William H. Farrand; V. K. Fox; R. Gellert; Anupam Ghosh; M. P. Golombek; John P. Grotzinger; Edward A. Guinness; K. E. Herkenhoff; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; J. M. Moore; Richard V. Morris; Scott L. Murchie; T. J. Parker; Gale Paulsen; J. W. Rice; Steven W. Ruff; M. D. Smith

Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.


Journal of Geophysical Research | 2010

Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater

Raymond E. Arvidson; James F. Bell; Paolo Bellutta; Nathalie A. Cabrol; Jeffrey G. Catalano; J. Cohen; Larry S. Crumpler; D. J. Des Marais; T. A. Estlin; William H. Farrand; R. Gellert; J. A. Grant; R. N. Greenberger; Edward A. Guinness; K. E. Herkenhoff; J. A. Herman; Karl Iagnemma; James Richard Johnson; G. Klingelhöfer; R. Li; Kimberly Ann Lichtenberg; S. Maxwell; D. W. Ming; Richard V. Morris; Melissa S. Rice; Steven W. Ruff; Amy Shaw; K. L. Siebach; P. A. de Souza; A. W. Stroupe

Spirit Mars Rover Mission : Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater


Geochimica et Cosmochimica Acta | 2004

Chromium Speciation and Mobility in a High Level Nuclear Waste Vadose Zone Plume

John M. Zachara; Calvin C. Ainsworth; Gordon E. Brown; Jeffrey G. Catalano; James P. McKinley; Odeta Qafoku; Steven C. Smith; James E. Szecsody; Sam Traina; Jeffrey A. Warner

Radioactive core samples containing elevated concentrations of Cr from a high level nuclear waste plume in the Hanford vadose zone were studied to asses the future mobility of Cr. Cr(VI) is an important subsurface contaminant at the Hanford Site. The plume originated in 1969 by leakage of self-boiling supernate from a tank containing REDOX process waste. The supernate contained high concentrations of alkali (NaOH ≈ 5.25 mol/L), salt (NaNO3/NaNO2 >10 mol/L), aluminate [Al(OH)4− = 3.36 mol/L], Cr(VI) (0.413 mol/L), and 137Cs+ (6.51 × 10−5 mol/L). Water and acid extraction of the oxidized subsurface sediments indicated that a significant portion of the total Cr was associated with the solid phase. Mineralogic analyses, Cr valence speciation measurements by X-ray adsorption near edge structure (XANES) spectroscopy, and small column leaching studies were performed to identify the chemical retardation mechanism and leachability of Cr. While X-ray diffraction detected little mineralogic change to the sediments from waste reaction, scanning electron microscopy (SEM) showed that mineral particles within 5 m of the point of tank failure were coated with secondary, sodium aluminosilicate precipitates. The density of these precipitates decreased with distance from the source (e.g., beyond 10 m). The XANES and column studies demonstrated the reduction of 29–75% of the total Cr to insoluble Cr(III), and the apparent precipitation of up to 43% of the Cr(VI) as an unidentified, non-leachable phase. Both Cr(VI) reduction and Cr(VI) precipitation were greater in sediments closer to the leak source where significant mineral alteration was noted by SEM. These and other observations imply that basic mineral hydrolysis driven by large concentrations of OH− in the waste stream liberated Fe(II) from the otherwise oxidizing sediments that served as a reductant for CrO42−. The coarse-textured Hanford sediments contain silt-sized mineral phases (biotite, clinochlore, magnetite, and ilmenite) that are sources of Fe(II). Other dissolution products (e.g., Ba2+) or Al(OH)4− present in the waste stream may have induced Cr(VI) precipitation as pH moderated through mineral reaction. The results demonstrate that a minimum of 42% of the total Cr inventory in all of the samples was immobilized as Cr(III) and Cr(VI) precipitates that are unlikely to dissolve and migrate to groundwater under the low recharge conditions of the Hanford vadose zone.


Environmental Science & Technology | 2013

Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

Zimeng Wang; Sung Woo Lee; Jeffrey G. Catalano; Juan S. Lezama-Pacheco; John R. Bargar; Bradley M. Tebo; Daniel E. Giammar

The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.


American Mineralogist | 2004

Analysis of uranyl-bearing phases by EXAFS spectroscopy: Interferences, multiple scattering, accuracy of structural parameters, and spectral differences

Jeffrey G. Catalano; Gordon E. Brown

Abstract As part of a larger study of uranium speciation in complex environmental samples, we have collected and analyzed the U LIII-edge extended X-ray absorption fine structure (EXAFS) spectra of nineteen minerals and compounds containing uranium as the uranyl moiety, UO22+. Analysis of seventeen of these spectra yielded structural parameters for uranyl local environments that agree with their published crystal structures; the clarkeite EXAFS spectrum and published crystal structure do not agree, and zellerite lacks a published structure. EXAFS fitting results for clarkeite show significant variability in the local environment of uranium, indicating that this phase is not truly hexagonal. Although zellerite lacks a published structure, its EXAFS spectrum is quite similar to that of rutherfordine, suggesting a similar uranyl local environment, and possibly a related structure. Our analysis of the uranium EXAFS spectra of the nineteen phases indicates that multiple scattering (MS) contributes significant spectral amplitude, especially MS associated with the uranyl moiety and carbonate and phosphate ligands. The signal from MS associated with bidentate carbonate is strong and ubiquitous, even in aqueous UO2(CO3)34-, suggesting that this signal may serve as an indicator of bidentate carbonate binding to uranyl in adsorption complexes. Multiple atomic shells at similar distances, or split atomic shells-both common features in the structure of uranyl-containing phases-produce interferences in the EXAFS spectrum that reduce the accuracy of the analysis. EXAFS-derived interatomic distances do not differ significantly from those derived from XRD, except when spectral interferences cause systematic errors in the analysis. Spectral differences and similarities have been analyzed using statistical methods. Quantitative analysis of the EXAFS spectra of samples containing multiple uranium phases may be complicated by the similarity of spectra from the same or related uranium-containing mineral groups, and by the possibility that two phases may mask the presence of a third. As EXAFS spectroscopy cannot always unambiguously determine the speciation of uranium in environmental samples, other complementary analytical techniques should be employed as well.


Journal of Nuclear Materials | 2002

Enthalpies of formation of Ce-pyrochlore, Ca0.93Ce1.00Ti2.035O7.00, U-pyrochlore, Ca1.46U4+0.23U6+0.46Ti1.85O7.00 and Gd-pyrochlore, Gd2Ti2O7: three materials relevant to the proposed waste form for excess weapons plutonium

K.B. Helean; A. Navrotsky; Eric R. Vance; Melody L. Carter; Bartley B. Ebbinghaus; Oscar H. Krikorian; Jie Lian; L. M. Wang; Jeffrey G. Catalano

High temperature oxide melt solution calorimetry was used to derive standard enthalpies of formation, ΔH0f (kJ/mol), for three pyrochlore phases: Ca0.93Ce1.00Ti2.035O7.00 (−3656.0±5.6), Ca1.46U4+0.23U6+0.46Ti1.85O7.00 (−3610.6±4.1) and Gd2Ti2O7 (−3822.5±4.9). Enthalpy of drop solution data, ΔHds, were used to calculate enthalpies of formation with respect to an oxide phase assemblage, ΔH0f−ox: CaO+MO2+2TiO2=CaMTi2O7 or Gd2O3+2TiO2=Gd2Ti2O7, and an oxide/perovskite phase assemblage, ΔH0f−pv+ox: CaTiO3+MO2+TiO2=CaMTi2O7, where M=Ce or U. All three pyrochlore samples were stable in enthalpy relative to an oxide assemblage with ΔH0f−ox (kJ/mol) (Gd2Ti2O7)=−113.4±2.8; ΔH0f−ox(Ca1.46U4+0.23U6+0.46Ti1.85O7.00)=−123.1±3.4; ΔH0f−ox(Ca0.93Ce1.00Ti2.035O7.00)=−54.1±5.2. U-pyrochlore was stable in enthalpy relative to an oxide/perovskite assemblage (ΔH0f−pv+ox=−5.1±4.0 kJ/mol). Ce-pyrochlore was metastable in enthalpy relative to the oxide/perovskite phase assemblage (ΔH0f−pv+ox=+21.0±5.5 kJ/mol). A significant metastability field was defined with respect to an oxide/perovskite phase assemblage. However, the proposed waste form baseline composition lies in the stable regions of the phase diagrams.


Environmental Science & Technology | 2012

Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate.

Abhas Singh; Jeffrey G. Catalano; Kai-Uwe Ulrich; Daniel E. Giammar

The molecular-scale immobilization mechanisms of uranium uptake in the presence of phosphate and goethite were examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. Wet chemistry data from U(VI)-equilibrated goethite suspensions at pH 4-7 in the presence of ~100 μM total phosphate indicated changes in U(VI) uptake mechanisms from adsorption to precipitation with increasing total uranium concentrations and with increasing pH. EXAFS analysis revealed that the precipitated U(VI) had a structure consistent with the meta-autunite group of solids. The adsorbed U(VI), in the absence of phosphate at pH 4-7, formed bidentate edge-sharing, ≡ Fe(OH)(2)UO(2), and bidentate corner-sharing, (≡ FeOH)(2)UO(2), surface complexes with respective U-Fe coordination distances of ~3.45 and ~4.3 Å. In the presence of phosphate and goethite, the relative amounts of precipitated and adsorbed U(VI) were quantified using linear combinations of the EXAFS spectra of precipitated U(VI) and phosphate-free adsorbed U(VI). A U(VI)-phosphate-Fe(III) oxide ternary surface complex is suggested as the dominant species at pH 4 and total U(VI) of 10 μM or less on the basis of the linear combination fitting, a P shell indicated by EXAFS, and the simultaneous enhancement of U(VI) and phosphate uptake on goethite. A structural model for the ternary surface complex was proposed that included a single phosphate shell at ~3.6 Å (U-P) and a single iron shell at ~4.3 Å (U-Fe). While the data can be explained by a U-bridging ternary surface complex, (≡ FeO)(2)UO(2)PO(4), it is not possible to statistically distinguish this scenario from one with P-bridging complexes also present.


Geology | 2013

A hematite-bearing layer in Gale Crater, Mars: Mapping and implications for past aqueous conditions

A. A. Fraeman; Raymond E. Arvidson; Jeffrey G. Catalano; John P. Grotzinger; Richard V. Morris; Scott L. Murchie; K. Stack; David Carl Humm; J. A. McGovern; F. P. Seelos; Kimberly D. Seelos; C. E. Viviano

Oversampled Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) visible and near-infrared hyperspectral data over Mount Sharp in Gale Crater, Mars, were used to generate spatially sharpened maps of the location of red crystalline hematite within the uppermost stratum of an ∼6.5-km-long ridge on the mound’s northern flank. Finely layered strata underlie the ridge to the north and have dips consistent with the nearby Mount Sharp sedimentary sequence. Fe-Mg smectites are exposed in a valley to the south of the ridge. Emplacement of the hematite is hypothesized to result either from exposure of anoxic Fe^(2+)-rich groundwater to an oxidizing environment, leading to precipitation of hematite or its precursors, or from in-place weathering of precursor silicate materials under oxidizing conditions. These hypotheses and implications for habitability will be testable with in situ measurements by the Mars rover Curiosity when it reaches Mount Sharp.


Environmental Science & Technology | 2012

Controls on Fe(II)-activated trace element release from goethite and hematite.

Andrew J. Frierdich; Jeffrey G. Catalano

Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occurs near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.


Geology | 2011

Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization

Andrew J. Frierdich; Yun Luo; Jeffrey G. Catalano

Microbially driven iron redox cycling in soil and sedimentary systems, including during diagenesis and fluid migration, may activate secondary abiotic reactions between aqueous Fe(II) and solid Fe(III) oxides. These reactions catalyze dynamic recrystallization of iron oxide minerals through localized and simultaneous oxidative adsorption of Fe(II) and reductive dissolution of Fe(III). Redox-active trace elements undergo speciation changes during this process, but the impact redox-driven recrystallization has on redox-inactive trace elements associated with iron oxides is uncertain. Here we demonstrate that Ni is cycled through the minerals goethite and hematite during redox-driven recrystallization. X-ray absorption spectroscopy demonstrates that during this process adsorbed Ni becomes progressively incorporated into the minerals. Kinetic studies using batch reactors containing aqueous Fe(II) and Ni preincorporated into iron oxides display substantial release of Ni to solution. We conclude that iron oxide recrystallization activated by aqueous Fe(II) induces cycling of Ni through the mineral structure, with adsorbed Ni overgrown in regions of Fe(II) oxidative adsorption and incorporated Ni released in regions of reductive dissolution of structural Fe(III). The redistribution of Ni among the mineral bulk, mineral surface, and aqueous solution appears to be thermodynamically controlled and catalyzed by Fe(II). Our work suggests that important proxies for ocean composition on the early Earth may be invalid, identifies new processes controlling micronutrient availability in soil, sedimentary, and aquatic ecosystems, and points toward a mechanism for trace element mobilization during diagenesis and enrichment in geologic fluids.

Collaboration


Dive into the Jeffrey G. Catalano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel E. Giammar

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Paul Fenter

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Thomas P. Trainor

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Zheming Wang

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Changyong Park

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Zachara

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge