Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pardis C. Sabeti is active.

Publication


Featured researches published by Pardis C. Sabeti.


Nature | 2010

Integrating common and rare genetic variation in diverse human populations.

David Altshuler; Richard A. Gibbs; Leena Peltonen; Emmanouil T. Dermitzakis; Stephen F. Schaffner; Fuli Yu; Penelope E. Bonnen; de Bakker Pi; Panos Deloukas; Stacey Gabriel; R. Gwilliam; Sarah Hunt; Michael Inouye; Xiaoming Jia; Aarno Palotie; Melissa Parkin; Pamela Whittaker; Kyle Chang; Alicia Hawes; Lora Lewis; Yanru Ren; David A. Wheeler; Donna M. Muzny; C. Barnes; Katayoon Darvishi; Joshua M. Korn; Kristiansson K; Cin-Ty A. Lee; McCarrol Sa; James Nemesh

Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called ‘HapMap 3’, includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of ≤5%, and demonstrated the feasibility of imputing newly discovered CNPs and SNPs. This expanded public resource of genome variants in global populations supports deeper interrogation of genomic variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.


Nature | 2001

Linkage disequilibrium in the human genome

David Reich; Michele Cargill; Stacey Bolk; James S. Ireland; Pardis C. Sabeti; Daniel J. Richter; Thomas Lavery; Rose Kouyoumjian; Shelli F. Farhadian; Ryk Ward; Eric S. Lander

With the availability of a dense genome-wide map of single nucleotide polymorphisms (SNPs), a central issue in human genetics is whether it is now possible to use linkage disequilibrium (LD) to map genes that cause disease. LD refers to correlations among neighbouring alleles, reflecting ‘haplotypes’ descended from single, ancestral chromosomes. The size of LD blocks has been the subject of considerable debate. Computer simulations and empirical data have suggested that LD extends only a few kilobases (kb) around common SNPs, whereas other data have suggested that it can extend much further, in some cases greater than 100 kb. It has been difficult to obtain a systematic picture of LD because past studies have been based on only a few (1–3) loci and different populations. Here, we report a large-scale experiment using a uniform protocol to examine 19 randomly selected genomic regions. LD in a United States population of north-European descent typically extends 60 kb from common alleles, implying that LD mapping is likely to be practical in this population. By contrast, LD in a Nigerian population extends markedly less far. The results illuminate human history, suggesting that LD in northern Europeans is shaped by a marked demographic event about 27,000–53,000 years ago.


Nature | 2002

Detecting recent positive selection in the human genome from haplotype structure

Pardis C. Sabeti; David Reich; John M. Higgins; Haninah Z. P. Levine; Daniel J. Richter; Stephen F. Schaffner; Stacey Gabriel; Jill Platko; Nick Patterson; Gavin J. McDonald; Hans Ackerman; S J Campbell; David Altshuler; Richard S. Cooper; Dominic P. Kwiatkowski; Ryk Ward; Eric S. Lander

The ability to detect recent natural selection in the human population would have profound implications for the study of human history and for medicine. Here, we introduce a framework for detecting the genetic imprint of recent positive selection by analysing long-range haplotypes in human populations. We first identify haplotypes at a locus of interest (core haplotypes). We then assess the age of each core haplotype by the decay of its association to alleles at various distances from the locus, as measured by extended haplotype homozygosity (EHH). Core haplotypes that have unusually high EHH and a high population frequency indicate the presence of a mutation that rose to prominence in the human gene pool faster than expected under neutral evolution. We applied this approach to investigate selection at two genes carrying common variants implicated in resistance to malaria: G6PD and CD40 ligand. At both loci, the core haplotypes carrying the proposed protective mutation stand out and show significant evidence of selection. More generally, the method could be used to scan the entire genome for evidence of recent positive selection.


Science | 2006

Positive Natural Selection in the Human Lineage

Pardis C. Sabeti; Stephen F. Schaffner; Benjamin Fry; Jason Lohmueller; Patrick Varilly; O. Shamovsky; Alejandro Palma; Tarjei S. Mikkelsen; David Altshuler; Eric S. Lander

Positive natural selection is the force that drives the increase in prevalence of advantageous traits, and it has played a central role in our development as a species. Until recently, the study of natural selection in humans has largely been restricted to comparing individual candidate genes to theoretical expectations. The advent of genome-wide sequence and polymorphism data brings fundamental new tools to the study of natural selection. It is now possible to identify new candidates for selection and to reevaluate previous claims by comparison with empirical distributions of DNA sequence variation across the human genome and among populations. The flood of data and analytical methods, however, raises many new challenges. Here, we review approaches to detect positive natural selection, describe results from recent analyses of genome-wide data, and discuss the prospects and challenges ahead as we expand our understanding of the role of natural selection in shaping the human genome.


American Journal of Human Genetics | 2004

Genetic Signatures of Strong Recent Positive Selection at the Lactase Gene

Todd Bersaglieri; Pardis C. Sabeti; Nick Patterson; Trisha Vanderploeg; Steve F. Schaffner; Jared A. Drake; Matthew Rhodes; David Reich; Joel N. Hirschhorn

In most human populations, the ability to digest lactose contained in milk usually disappears in childhood, but in European-derived populations, lactase activity frequently persists into adulthood (Scrimshaw and Murray 1988). It has been suggested (Cavalli-Sforza 1973; Hollox et al. 2001; Enattah et al. 2002; Poulter et al. 2003) that a selective advantage based on additional nutrition from dairy explains these genetically determined population differences (Simoons 1970; Kretchmer 1971; Scrimshaw and Murray 1988; Enattah et al. 2002), but formal population-genetics-based evidence of selection has not yet been provided. To assess the population-genetics evidence for selection, we typed 101 single-nucleotide polymorphisms covering 3.2 Mb around the lactase gene. In northern European-derived populations, two alleles that are tightly associated with lactase persistence (Enattah et al. 2002) uniquely mark a common (~77%) haplotype that extends largely undisrupted for >1 Mb. We provide two new lines of genetic evidence that this long, common haplotype arose rapidly due to recent selection: (1) by use of the traditional F(ST) measure and a novel test based on p(excess), we demonstrate large frequency differences among populations for the persistence-associated markers and for flanking markers throughout the haplotype, and (2) we show that the haplotype is unusually long, given its high frequency--a hallmark of recent selection. We estimate that strong selection occurred within the past 5,000-10,000 years, consistent with an advantage to lactase persistence in the setting of dairy farming; the signals of selection we observe are among the strongest yet seen for any gene in the genome.


Science | 2014

Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak

Stephen K. Gire; Augustine Goba; Kristian G. Andersen; Rachel Sealfon; Daniel J. Park; Lansana Kanneh; Simbirie Jalloh; Mambu Momoh; Mohamed Fullah; Gytis Dudas; Shirlee Wohl; Lina M. Moses; Nathan L. Yozwiak; Sarah M. Winnicki; Christian B. Matranga; Christine M. Malboeuf; James Qu; Adrianne D. Gladden; Stephen F. Schaffner; Xiao Yang; Pan Pan Jiang; Mahan Nekoui; Andres Colubri; Moinya Ruth Coomber; Mbalu Fonnie; Alex Moigboi; Michael Gbakie; Fatima K. Kamara; Veronica Tucker; Edwin Konuwa

In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000× coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.


Nature Genetics | 2006

Common deletion polymorphisms in the human genome

Steven A. McCarroll; Tracy N. Hadnott; George H. Perry; Pardis C. Sabeti; Michael C. Zody; Jeffrey C. Barrett; Stephanie Dallaire; Stacey Gabriel; Charles Lee; Mark J. Daly; David Altshuler

The locations and properties of common deletion variants in the human genome are largely unknown. We describe a systematic method for using dense SNP genotype data to discover deletions and its application to data from the International HapMap Consortium to characterize and catalogue segregating deletion variants across the human genome. We identified 541 deletion variants (94% novel) ranging from 1 kb to 745 kb in size; 278 of these variants were observed in multiple, unrelated individuals, 120 in the homozygous state. The coding exons of ten expressed genes were found to be commonly deleted, including multiple genes with roles in sex steroid metabolism, olfaction and drug response. These common deletion polymorphisms typically represent ancestral mutations that are in linkage disequilibrium with nearby SNPs, meaning that their association to disease can often be evaluated in the course of SNP-based whole-genome association studies.


Nature Genetics | 2006

A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC

Paul I. W. de Bakker; Gil McVean; Pardis C. Sabeti; Marcos M Miretti; Todd Green; Jonathan Marchini; Xiayi Ke; Alienke J. Monsuur; Pamela Whittaker; Marcos Delgado; Jonathan Morrison; Angela Richardson; Emily Walsh; Xiaojiang Gao; Luana Galver; John Hart; David A. Hafler; Margaret A. Pericak-Vance; John A. Todd; Mark J. Daly; John Trowsdale; Cisca Wijmenga; Tim J Vyse; Stephan Beck; Sarah S. Murray; Mary Carrington; Simon G. Gregory; Panos Deloukas; John D. Rioux

The proteins encoded by the classical HLA class I and class II genes in the major histocompatibility complex (MHC) are highly polymorphic and are essential in self versus non-self immune recognition. HLA variation is a crucial determinant of transplant rejection and susceptibility to a large number of infectious and autoimmune diseases. Yet identification of causal variants is problematic owing to linkage disequilibrium that extends across multiple HLA and non-HLA genes in the MHC. We therefore set out to characterize the linkage disequilibrium patterns between the highly polymorphic HLA genes and background variation by typing the classical HLA genes and >7,500 common SNPs and deletion-insertion polymorphisms across four population samples. The analysis provides informative tag SNPs that capture much of the common variation in the MHC region and that could be used in disease association studies, and it provides new insight into the evolutionary dynamics and ancestral origins of the HLA loci and their haplotypes.


Science | 2010

A Composite of Multiple Signals Distinguishes Causal Variants in Regions of Positive Selection

Sharon R. Grossman; Ilya Shylakhter; Elinor K. Karlsson; Elizabeth H. Byrne; Shannon Morales; Gabriel Frieden; Elizabeth Hostetter; Elaine Angelino; Manuel Garber; Or Zuk; Eric S. Lander; Stephen F. Schaffner; Pardis C. Sabeti

Pinpointing Genetic Selection The human genome contains hundreds of regions with evidence of recent positive natural selection, yet, for all but a handful of cases, the underlying advantageous mutation remains unknown. Current methods to detect the signal of selection often results in the identification of a broad genomic region containing many candidate regions that vary among individuals. By combining existing statistical methods, Grossman et al. (p. 883, published online 7 January) developed a method, termed Composite of Multiple Signals, which can increase the ability to pinpoint the specific variant under selection. Several candidate regions under selection in human populations were identified. Combining statistical methods detects signals of selection with increased sensitivity and a lower false-positive rate. The human genome contains hundreds of regions whose patterns of genetic variation indicate recent positive natural selection, yet for most the underlying gene and the advantageous mutation remain unknown. We developed a method, composite of multiple signals (CMS), that combines tests for multiple signals of selection and increases resolution by up to 100-fold. By applying CMS to candidate regions from the International Haplotype Map, we localized population-specific selective signals to 55 kilobases (median), identifying known and novel causal variants. CMS can not just identify individual loci but implicates precise variants selected by evolution.


Nature Genetics | 2007

A genome-wide map of diversity in Plasmodium falciparum

Sarah K. Volkman; Pardis C. Sabeti; David DeCaprio; Daniel E. Neafsey; Stephen F. Schaffner; Danny A. Milner; Johanna P. Daily; Ousmane Sarr; Daouda Ndiaye; Omar Ndir; Soulyemane Mboup; Manoj T. Duraisingh; Amanda K Lukens; Alan Derr; Nicole Stange-Thomann; Skye Waggoner; Robert C. Onofrio; Liuda Ziaugra; Evan Mauceli; Sante Gnerre; David B. Jaffe; Joanne Zainoun; Roger Wiegand; Bruce W. Birren; Daniel L. Hartl; James E. Galagan; Eric S. Lander; Dyann F. Wirth

Genetic variation allows the malaria parasite Plasmodium falciparum to overcome chemotherapeutic agents, vaccines and vector control strategies and remain a leading cause of global morbidity and mortality. Here we describe an initial survey of genetic variation across the P. falciparum genome. We performed extensive sequencing of 16 geographically diverse parasites and identified 46,937 SNPs, demonstrating rich diversity among P. falciparum parasites (π = 1.16 × 10−3) and strong correlation with gene function. We identified multiple regions with signatures of selective sweeps in drug-resistant parasites, including a previously unidentified 160-kb region with extremely low polymorphism in pyrimethamine-resistant parasites. We further characterized 54 worldwide isolates by genotyping SNPs across 20 genomic regions. These data begin to define population structure among African, Asian and American groups and illustrate the degree of linkage disequilibrium, which extends over relatively short distances in African parasites but over longer distances in Asian parasites. We provide an initial map of genetic diversity in P. falciparum and demonstrate its potential utility in identifying genes subject to recent natural selection and in understanding the population genetics of this parasite.

Collaboration


Dive into the Pardis C. Sabeti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge