Daniel Gallego-Perez
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Gallego-Perez.
Cancer Cell | 2016
Sung Hak Kim; Ravesanker Ezhilarasan; Emma Phillips; Daniel Gallego-Perez; Amanda Sparks; David Taylor; Katherine J. Ladner; Takuya Furuta; Hemragul Sabit; Rishi Raj Chhipa; Ju Hwan Cho; Ahmed Mohyeldin; Samuel Beck; Kazuhiko Kurozumi; Toshihiko Kuroiwa; Ryoichi Iwata; Akio Asai; Jonghwan Kim; Erik P. Sulman; Shi Yuan Cheng; L. James Lee; Mitsutoshi Nakada; Denis C. Guttridge; Biplab Dasgupta; Violaine Goidts; Krishna P. Bhat; Ichiro Nakano
Activation of nuclear factor κB (NF-κB) induces mesenchymal (MES) transdifferentiation and radioresistance in glioma stem cells (GSCs), but molecular mechanisms for NF-κB activation in GSCs are currently unknown. Here, we report that mixed lineage kinase 4 (MLK4) is overexpressed in MES but not proneural (PN) GSCs. Silencing MLK4 suppresses self-renewal, motility, tumorigenesis, and radioresistance of MES GSCs via a loss of the MES signature. MLK4 binds and phosphorylates the NF-κB regulator IKKα, leading to activation of NF-κB signaling in GSCs. MLK4 expression is inversely correlated with patient prognosis in MES, but not PN high-grade gliomas. Collectively, our results uncover MLK4 as an upstream regulator of NF-κB signaling and a potential molecular target for the MES subtype of glioblastomas.
Small | 2015
Lingqian Chang; Marci Howdyshell; Wei-Ching Liao; Chi-Ling Chiang; Daniel Gallego-Perez; Zhaogang Yang; Wu Lu; John C. Byrd; Natarajan Muthusamy; L. James Lee; R. Sooryakumar
A novel high-throughput magnetic tweezers-based 3D microchannel electroporation system capable of transfecting 40 000 cells/cm(2) on a single chip for gene therapy, regenerative medicine, and intracellular detection of target mRNA for screening cellular heterogeneity is reported. A single cell or an ordered array of individual cells are remotely guided by programmable magnetic fields to poration sites with high (>90%) cell alignment efficiency to enable various transfection reagents to be delivered simultaneously into the cells. The present technique, in contrast to the conventional vacuum-based approach, is significantly gentler on the cellular membrane yielding >90% cell viability and, moreover, allows transfected cells to be transported for further analysis. Illustrating the versatility of the system, the GATA2 molecular beacon is delivered into leukemia cells to detect the regulation level of the GATA2 gene that is associated with the initiation of leukemia. The uniform delivery and a sharp contrast of fluorescence intensity between GATA2 positive and negative cells demonstrate key aspects of the platform for gene transfer, screening and detection of targeted intracellular markers in living cells.
Current Pharmaceutical Biotechnology | 2014
Xinmei Wang; Xiaomeng Huang; Zhaogang Yang; Daniel Gallego-Perez; Junyu Ma; Xi Zhao; Jing Xie; Ichiro Nakano; L. James Lee
OBJECTIVE Among heterogeneous glioblastoma multiforme (GBM) cells, glioblastoma stem cells (GSCs) is a subpopulation having a critical role in tumor initiation and therapy resistance. Thus targeting GSCs would be an essential step to completely eradicate this lethal disease. MicroRNA-1 (miR-1) expression is deregulated in GBM patients and restoration of miR-1 by viral-vector in GBM cells has been demonstrated to inhibit tumor initiation and attenuate cell migration. Here, we show that a transferrin-targeting non-invasive nanoparticle delivery system (Tf-NP) can efficiently deliver miR-1 to GBM patient-derived GSC-enriched sphere cultures (GBM spheres). METHODS Delivery efficiency of the transferrin- targeting non-invasive nanoparticle was investigated by flow cytometry and further confirmed by confocal microscopy. The levels of miR-1 and its target molecules in GBM spheres were measured by qRT-PCR and immunoblotting. Migration capacity of Tf-NP-miR-1 treated GBM spheres were evaluated by transwell migration assay. RESULTS Tf-NPmiR- 1 treatment resulted in an over 200-fold increase of mature miR-1 compared to free miR-1 and Tf-NP-miR negative control (Tf-NP-miR-NC). Transferrin-mediated NP delivery resulted in a 3-fold higher delivery efficiency compared to NP without transferrin modification. Tf-NP-miR-1 treatment on GBM spheres significantly inhibited migration of GBM spheres by 30-50% with associated decline of MET and EGFR expression. Our data supported that Tf-NP could be used as an efficient and effective delivery system which has high potential to benefit the development of miR-based therapeutics for GBM treatment.
Dental Materials | 2011
Alejandro Pelaez-Vargas; Daniel Gallego-Perez; M. Magallanes-Perdomo; M.H. Fernandes; Derek J. Hansford; A.H. De Aza; P. Pena; F.J. Monteiro
UNLABELLED Titanium implants are the gold standard in dentistry; however, problems such as gingival tarnishing and peri-implantitis have been reported. For zirconia to become a competitive alternative dental implant material, surface modification techniques that induce guided tissue growth must be developed. OBJECTIVES To develop alternative surface modification techniques to promote guided tissue regeneration on zirconia materials, for applications in dental implantology. METHODS A methodology that combined soft lithography and sol-gel chemistry was used to obtain isotropic micropatterned silica coatings on yttria-stabilized zirconia substrates. The materials were characterized via chemical, structural, surface morphology approaches. In vitro biological behavior was evaluated in terms of early adhesion and viability/metabolic activity of human osteoblast-like cells. Statistical analysis was conducted using one-way ANOVA/Tukey HSD post hoc test. RESULTS Isotropic micropatterned silica coatings on yttria-stabilized zirconia substrates were obtained using a combined approach based on sol-gel technology and soft lithography. Micropatterned silica surfaces exhibited a biocompatible behavior, and modulated cell responses (i.e. inducing early alignment of osteoblast-like cells). After 7d of culture, the cells fully covered the top surfaces of pillar microstructured silica films. SIGNIFICANCE The micropatterned silica films on zirconia showed a biocompatible response, and were capable of inducing guided osteoblastic cell adhesion, spreading and propagation. The results herein presented suggest that surface-modified ceramic implants via soft lithography and sol-gel chemistry could potentially be used to guide periodontal tissue regeneration, thus promoting tight tissue apposition, and avoiding gingival retraction and peri-implantitis.
Lab on a Chip | 2012
Daniel Gallego-Perez; Natalia Higuita-Castro; Lisa Denning; Jessica DeJesus; Kirstin Dahl; Atom Sarkar; Derek J. Hansford
Guided cell migration plays a crucial role in tumor metastasis, which is considered to be the major cause of death in cancer patients. Such behavior is regulated in part by micro/nanoscale topographical cues present in the parenchyma or stroma in the form of fiber-like and/or conduit-like structures (e.g., white matter tracts, blood/lymphatic vessels, subpial and subperitoneal spaces). In this paper we used soft lithography micromolding to develop a tissue culture polystyrene platform with a microscale surface pattern that was able to induce guided cell motility along/through fiber-/conduit-like structures. The migratory behaviors of primary (glioma) and metastatic (lung and colon) tumors excised from the brain were monitored via time-lapse microscopy at the single cell level. All the tumor cells exhibited axially persistent cell migration, with percentages of unidirectionally motile cells of 84.0 ± 3.5%, 58.3 ± 6.8% and 69.4 ± 5.4% for the glioma, lung, and colon tumor cells, respectively. Lung tumor cells showed the highest migratory velocities (41.8 ± 4.6 μm h(-1)) compared to glioma (24.0 ± 1.8 μm h(-1)) and colon (26.7 ± 2.8 μm h(-1)) tumor cells. This platform could potentially be used in conjunction with other biological assays to probe the mechanisms underlying the metastatic phenotype under guided cell migration conditions, and possibly by itself as an indicator of the effectiveness of treatments that target specific tumor cell motility behaviors.
Analytical Chemistry | 2010
Nicholas Ferrell; Daniel Gallego-Perez; Natalia Higuita-Castro; Randall T. Butler; Rashmeet K. Reen; Keith J. Gooch; Derek J. Hansford
We present a simple method to actively pattern individual cells and groups of cells in a polymer-based microdevice using vacuum-assisted cell seeding. Soft lithography is used to mold polymer microwells with various geometries on top of commercially available porous membranes. Cell suspensions are placed in a vacuum filtration setup to pull culture medium through the microdevice, trapping the cells in the microwells. The process is evaluated by determining the number of cells per microwell for a given cell seeding density and microwell geometry. This method is tested with adherent and nonadherent cells (NIH 3T3 fibroblasts, PANC-1 pancreatic ductal epithelial-like cells, and THP-1 monocytic leukemia cells). These devices could find applications in high-throughput cell screening, cell transport studies, guided formation of cell clusters, and tissue engineering.
Biosensors and Bioelectronics | 2014
A. Benavente-Babace; Daniel Gallego-Perez; Derek J. Hansford; Sergio Arana; E. Pérez-Lorenzo; Maite Mujika
Lab on a chip (LOC) systems provide interesting and low-cost solutions for key studies and applications in the biomedical field. Along with microfluidics, these microdevices make single-cell manipulation possible with high spatial and temporal resolution. In this work we have designed, fabricated and characterized a versatile and inexpensive microfluidic platform for on-chip selective single-cell trapping and treatment using laminar co-flow. The combination of co-existing laminar flow manipulation and hydrodynamic single-cell trapping for selective treatment offers a cost-effective solution for studying the effect of novel drugs on single-cells. The operation of the whole system is experimentally simple, highly adaptable and requires no specific equipment. As a proof of concept, a cytotoxicity study of ethanol in isolated hepatocytes is presented. The developed microfluidic platform controlled by means of co-flow is an attractive and multipurpose solution for the study of new substances of high interest in cell biology research. In addition, this platform will pave the way for the study of cell behavior under dynamic and controllable fluidic conditions providing information at the individual cell level. Thus, this analysis device could also hold a great potential to easily use the trapped cells as sensing elements expanding its functionalities as a cell-based biosensor with single-cell resolution.
Trends in Biotechnology | 2017
Tairong Kuang; Lingqian Chang; Xiangfang Peng; Xianglong Hu; Daniel Gallego-Perez
Heterogeneities and oncogenesis essentially result from proteomic disorders orchestrated by changes in DNA and/or cytoplasmic mRNA. These genetic fluctuations, however, cannot be decoded through conventional label-free methods (e.g., patch clamps, electrochemical cellular biosensors, etc.) or morphological characterization. Molecular beacons (MBs) have recently emerged as efficient probes for interrogating biomarkers in live cancer cells. MBs hybridize with their intracellular targets (e.g., mRNAs, DNAs, or proteins), emitting a fluorescent signal that can be quantified and correlated with the expression levels of their targets. In this review we discuss MB probes with different delivery platforms for intracellular probing as well as novel MB designs for detecting a variety of targets in living cancer cells. Finally, we describe current trends in MB-based intracellular biosensors.
Nano Letters | 2016
Daniel Gallego-Perez; Lingqian Chang; Junfeng Shi; Junyu Ma; Sung-Hak Kim; Xi Zhao; Veysi Malkoc; Xinmei Wang; Mutsuko Minata; Kwang J. Kwak; Yun Wu; Gregory P. Lafyatis; Wu Lu; Derek J. Hansford; Ichiro Nakano; L. James Lee
Enhanced glioma-stem-cell (GSC) motility and therapy resistance are considered to play key roles in tumor cell dissemination and recurrence. As such, a better understanding of the mechanisms by which these cells disseminate and withstand therapy could lead to more efficacious treatments. Here, we introduce a novel micro-/nanotechnology-enabled chip platform for performing live-cell interrogation of patient-derived GSCs with single-clone resolution. On-chip analysis revealed marked intertumoral differences (>10-fold) in single-clone motility profiles between two populations of GSCs, which correlated well with results from tumor-xenograft experiments and gene-expression analyses. Further chip-based examination of the more-aggressive GSC population revealed pronounced interclonal variations in motility capabilities (up to ∼4-fold) as well as gene-expression profiles at the single-cell level. Chip-supported therapy resistance studies with a chemotherapeutic agent (i.e., temozolomide) and an oligo RNA (anti-miR363) revealed a subpopulation of CD44-high GSCs with strong antiapoptotic behavior as well as enhanced motility capabilities. The living-cell-interrogation chip platform described herein enables thorough and large-scale live monitoring of heterogeneous cancer-cell populations with single-cell resolution, which is not achievable by any other existing technology and thus has the potential to provide new insights into the cellular and molecular mechanisms modulating glioma-stem-cell dissemination and therapy resistance.
Dental Materials | 2012
Angela Carvalho; Alejandro Pelaez-Vargas; Daniel Gallego-Perez; Liliana Grenho; M.H. Fernandes; A.H. De Aza; M.P. Ferraz; Derek J. Hansford; F.J. Monteiro
UNLABELLED Surface modification of biomaterials has been shown to improve the biological response to dental implants. The ability to create a controlled micro-texture on the implant via additive surface modification techniques with bioactive nanohydroxyapatite (nanoHA) may positively influence guided tissue regeneration. OBJECTIVE The main goal of this study was to produce micro-fabricated SiO(2) surfaces modified with nanohydroxyapatite particles and to characterize their influence on the biological response of Human Dental-Pulp Mesenchymal Stem Cells (hDP-MSCs) and Streptococcus mutans. MATERIALS AND METHODS A combined methodology of sol-gel and soft-lithography was used to produce micropatterned SiO(2) thin films with different percentages of nanoHA micro-aggregates. The surfaces were characterized by SEM/EDS, FT-IR/ATR, AFM, XPS quantitative elemental percentage and contact angle measurements. Biological characterization was performed using hDP-MSCs cultures, while Streptococcus mutans was the selected microorganism to evaluate the bacterial adhesion on the thin films. RESULTS Micropatterned SiO(2) surfaces with 0%, 1% and 5% of nanoHA micro-aggregates were successfully produced using a combination of sol-gel and soft-lithography. These surfaces controlled the biological response, triggering alignment and oriented proliferation of hDP-MSCs and significant differences in the adhesion of S. mutans to the different surfaces. SIGNIFICANCE The micropatterned surfaces exhibited biocompatible behavior that induced an oriented adhesion and proliferation of hDP-MSCs while SiO(2) presented low bacterial adhesion. These results show that the combination of sol-gel with soft-lithography is a good approach to create micropatterned surfaces with bioactive nanoparticles for guided tissue regeneration.