Wei-Ching Liao
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wei-Ching Liao.
Analytical Chemistry | 2009
Wei-Ching Liao; Ja-an Annie Ho
Enterohemorrhagic Escherichia coli O157, a verocytotoxin (VT1/2)-producing pathogen, can be deadly because it can induce acute or chronic renal failure. To speed up the clinical diagnosis of related syndromes caused by E. coli O157, there is an urgent need for rapid, simple, and reliable analytical tools for its quantitation. In this study, we developed a novel electrochemical competitive genosensor, featuring gold-electrodeposited screen-printed electrodes (nanoAu/SPE) modified with a self-assembled monolayer of thiol-capped single-stranded DNA (capture probe), for the detection of the rfbE gene, which is specific to E. coli O157. This assay functions based on competition between the target gene (complementary to the capture probe DNA) and reporter DNA-tagged, hexaammineruthenium(III) chloride-encapsulated liposomes. The current signal of the released liposomal Ru(NH(3))(6)(3+) was measured using square wave voltammetry, yielding a sigmoidally shaped dose-response curve whose linear portion was over the range from 1 to 10(6) fmol. This liposomal competitive assay provides an amplification route for the detection of the rfbE gene at ultratrace levels; indeed, we could detect as little as 0.75 amol of the target rfbE DNA (equivalent to the amount present in 5 microL of a 0.15 pM solution).
Biosensors and Bioelectronics | 2010
Ja-an Annie Ho; Wei-Ling Hsu; Wei-Ching Liao; Je-Kuan Chiu; Mu-Lin Chen; Heng-Chia Chang; Chun-Cheng Li
A common approach towards developing immunoassays is to attach antibodies onto the surfaces of assay devices via a solid support. When directly adsorbed onto surfaces, however, antibodies generally adopt random orientations and therefore, often fail to exhibit their immunoaffinity. To preserve the antigen-binding activity of antibodies, there is an urgent need to develop specific and novel linking chemistries for attaching the antibodies to the solid surfaces in an oriented manner. In this paper, we report 2 alternative immobilization methods to enhance the orientation of antibodies onto screen-printed graphite electrodes (SPGEs). The first approach involves the deposition of gold nanoparticles (AuNPs) onto the SPGE and subsequent adsorption of monovalent half-antibody (monoAb) fragments of the anti-biotin antibody via Au-thiol bonds. For the second technique, we exploited the affinity of boronic acid towards sugar moieties by preparing a boronic acid-presenting SPGE surface to interact with the carbohydrate unit of this anti-biotin antibody. Using such approaches, we prepared an ultrasensitive electrochemical immunosensor, possessing a maximized epitope density, for the detection of biotin at concentrations as low as 0.19pg.
Journal of the American Chemical Society | 2016
Fujian Huang; Wei-Ching Liao; Yang Sung Sohn; Rachel Nechushtai; Chun-Hua Lu; Itamar Willner
A method to assemble light-responsive or pH-responsive microcapsules loaded with different loads (tetramethylrhodamine-modified dextran, TMR-D; microperoxidase-11, MP-11; CdSe/ZnS quantum dots; or doxorubicin-modified dextran, DOX-D) is described. The method is based on the layer-by-layer deposition of sequence-specific nucleic acids on poly(allylamine hydrochloride)-functionalized CaCO3 core microparticles, loaded with the different loads, that after the dissolution of the core particles with EDTA yields the stimuli-responsive microcapsules that include the respective loads. The light-responsive microcapsules are composed of photocleavable o-nitrobenzyl-phosphate-modified DNA shells, and the pH-responsive microcapsules are made of a cytosine-rich layer cross-linked by nucleic acid bridges. Irradiating the o-nitrobenzyl phosphate-functionalized microcapsules, λ = 365 nm, or subjecting the pH-responsive microcapsules to pH = 5.0, results in the cleavage of the microcapsule shells and the release of the loads. Preliminary studies address the cytotoxicity of the DOX-D-loaded microcapsules toward MDA-MB-231 breast cancer cells and normal MCF-10A breast epithelial cells. Selective cytotoxicity of the DOX-D-loaded microcapsules toward cancer cells is demonstrated.
Nano Letters | 2017
Shan Wang; Rémi Cazelles; Wei-Ching Liao; Margarita Vázquez-González; Amani Zoabi; Raed Abu-Reziq; Itamar Willner
Cu2+-ion-modified graphene oxide nanoparticles, Cu2+-GO NPs, act as a heterogeneous catalyst mimicking functions of horseradish peroxidase, HRP, and of NADH peroxidase. The Cu2+-GO NPs catalyze the oxidation of dopamine to aminochrome by H2O2 and catalyze the generation of chemiluminescence in the presence of luminol and H2O2. The Cu2+-GO NPs provide an active material for the chemiluminescence detection of H2O2 and allow the probing of the activity of H2O2-generating oxidases and the detection of their substrates. This is exemplified with detecting glucose by the aerobic oxidation of glucose by glucose oxidase and the Cu2+-GO NP-stimulated chemiluminescence intensity generated by the H2O2 product. Similarly, the Cu2+-GO NPs catalyze the H2O2 oxidation of NADH to the biologically active NAD+ cofactor. This catalytic system allows its conjugation to biocatalytic transformations involving NAD+-dependent enzyme, as exemplified for the alcohol dehydrogenase-catalyzed oxidation of benzyl alcohol to benzoic acid through the Cu2+-GO NPs-catalyzed regeneration of NAD+.
Bioanalysis | 2014
Cheng Huang Lin; Wei-Ching Liao; Hsin Kai Chen; Ting Yang Kuo
This Review provides a general understanding of paper spray-MS, including the methodology and theory associated with a number of different related applications. This method has become a direct sampling/ionization method for mass spectrometric analysis at ambient conditions and, as a result, it has greatly simplified and increased the speed of mass-spectrum analysis. It has now become an increasingly popular and important method for MS. The first part of this review discusses the fundamentals of paper spray. Some modifications are also reviewed, including nib-assisted paper spray, droplet monitoring, high-throughput paper spray, leaf spray, tissue spray and wooden tip spray. The second part focuses on recent applications, including the analysis of DBS, foodstuffs, drugs and oil. These studies show that paper spray-MS has great potential for use as a fast sampling ionization method, and for the direct analysis of biological and chemical samples at ambient conditions.
Nano Letters | 2017
Margarita Vázquez-González; Rebeca M. Torrente-Rodríguez; Anna Kozell; Wei-Ching Liao; Alessandro Cecconello; Susana Campuzano; José M. Pingarrón; Itamar Willner
Nanoparticles composed of Prussian Blue, PB, and the cyanometalate structural analogues, CuFe, FeCoFe, and FeCo, are examined as inorganic clusters that mimic the functions of peroxidases. PB acts as a superior catalyst for the oxidation of dopamine to aminochrome by H2O2. The oxidation of dopamine by H2O2 in the presence of PB is 6-fold faster than in the presence of CuFe. The cluster FeCo does not catalyze the oxidation of dopamine to aminochrome. The most efficient catalyst for the generation of chemiluminescence by the oxidation of luminol by H2O2 is, however, FeCo, and PB lacks any catalytic activity toward the generation of chemiluminescence. The order of catalyzed chemiluminescence generation is FeCo ≫ CuFe > FeCoFe. The clusters PB, CuFe, FeCoFe, and FeCo mimic the functions of NADH peroxidase. The catalyzed oxidation of NADH by H2O2 to form NAD+ follows the order PB ≫ CuFe ∼ FeCoFe, FeCo. The efficient generation of chemiluminescence by the FeCo-catalyzed oxidation of luminol by H2O2 is used to develop a glucose sensor. The aerobic oxidation of glucose in the presence of glucose oxidase, GOx, yields gluconic acid and H2O2. The chemiluminescence intensities formed by the GOx-generated H2O2 relate to the concentration of glucose, thus providing a quantitative readout signal for the concentrations of glucose.
Biosensors and Bioelectronics | 2013
Wei-Ching Liao; Min-Chieh Chuang; Ja-an Annie Ho
Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO.
Talanta | 2007
Subramanian Viswanathan; Wei-Ching Liao; Ching-Chieh Huang; Wei-Ling Hsu; Ja-an Annie Ho
This work describes the application of a three-dimensional gold nanoelectrode ensembles (GNEE) for monitoring L-dopa in standards and human urine samples using flow injection analysis (FIA) with amperometric detection. Analytical results reveal that the GNEE exhibited better electrocatalytic activity than a gold disk or glassy carbon electrode. Under optimal conditions of L-dopa analysis at GNEE, the calibration plot has a linear range of 5-300 ng/mL with a coefficient of variation (CV) of 3.1% in pH 7.0 phosphate buffer saline (PBS, pH 7.0). The detection limit was 3.0 ng/mL for FIA. The high precision and sensitivity of GNEE provides a feasible means of directly determining l-dopa in urine samples.
Biosensors and Bioelectronics | 2014
Wei-Ching Liao; Ja-an Annie Ho
Electrochemical method and surface plasmon resonance (SPR) spectroscopic analysis are utilized herein to investigate antibody immobilization without and with orientation control for site-positioning paratopes (antigen binding site) of the antibody molecules. Biotin and its antibody were selected in current study as model. Such an approach employed thiophene-3-boronic acid (T3BA) as paratope orientation controller, (i) enabled site orientation of the antibody molecules reducing the hiding of paratopes, and (ii) maintained the activity of the captured antibodies, as confirmed by electrochemical and SPR analysis. Anti-biotin antibody (a glycoprotein) was covalently bound to a self-assembled monolayer of T3BA modified on a nanogold-electrodeposited screen-printed electrode through boronic acid-saccharide interactions, with the boronic acid units specifically binding to the glycosylation sites of the antibody molecules. The immunosensor functioned based on competition between the analyte biotin and biotin-tagged, potassium hexacyanoferrate(II)-encapsulated liposomes. The current signal produced by the released liposomal Fe(CN)6(4-), measured using square wave voltammetry, yielded a sigmoidally shaped dose-response curve that was linear over eight orders of magnitude (from 10(-11) to 10(-3)M). Furthermore this biosensing system fabricated based on T3BA approach was found to possess significantly improved sensitivity, and the limit of detection toward biotin was calculated as 0.102 ng mL(-1) (equivalent to 6 μL of 4.19 × 10(-10)M biotin).
Journal of the American Chemical Society | 2016
Eyal Golub; H. Bauke Albada; Wei-Ching Liao; Yonatan Biniuri; Itamar Willner