Daniel Gerlach
Research Institute of Molecular Pathology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Gerlach.
Science | 2011
John K. Colbourne; Michael E. Pfrender; Donald L. Gilbert; W. Kelley Thomas; Abraham Tucker; Todd H. Oakley; Shin-ichi Tokishita; Andrea Aerts; Georg J. Arnold; Malay Kumar Basu; Darren J Bauer; Carla E. Cáceres; Liran Carmel; Claudio Casola; Jeong Hyeon Choi; John C. Detter; Qunfeng Dong; Serge Dusheyko; Brian D. Eads; Thomas Fröhlich; Kerry A. Geiler-Samerotte; Daniel Gerlach; Phil Hatcher; Sanjuro Jogdeo; Jeroen Krijgsveld; Evgenia V. Kriventseva; Dietmar Kültz; Christian Laforsch; Erika Lindquist; Jacqueline Lopez
The Daphnia genome reveals a multitude of genes and shows adaptation through gene family expansions. We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia’s genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Ewen F. Kirkness; Brian J. Haas; Weilin Sun; Henk R. Braig; M. Alejandra Perotti; John M. Clark; Si Hyeock Lee; Hugh M. Robertson; Ryan C. Kennedy; Eran Elhaik; Daniel Gerlach; Evgenia V. Kriventseva; Christine G. Elsik; Dan Graur; Catherine A. Hill; Jan A. Veenstra; Brian Walenz; Jose M. C. Tubio; José M. C. Ribeiro; Julio Rozas; J. Spencer Johnston; Justin T. Reese; Aleksandar Popadić; Marta Tojo; Didier Raoult; David L. Reed; Yoshinori Tomoyasu; Emily Kraus; Omprakash Mittapalli; Venu M. Margam
As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
Science | 2013
Cosmas D. Arnold; Daniel Gerlach; Christoph Stelzer; Łukasz M. Boryń; Martina Rath; Alexander Stark
The Regulatory Genome Multicellular organisms contain a variety of cell types that are morphologically and functionally distinct even though they typically contain the same genomic DNA. Differences stem from differential gene expression. Gene regulatory genomic regions (enhancers) are well studied, yet despite major efforts, such as Encode and modEncode, the number of enhancers in animal genomes and their genomic positions, cell-type specificity, and strengths are largely unknown. Arnold et al. (p. 1074, published online 17 January) report a method, termed STARR-seq, that measures the strength of enhancers genome-wide, giving insight into the organization of the regulatory genome. A map of thousands of Drosophila cell type–specific enhancers is revealed using a new method. Genomic enhancers are important regulators of gene expression, but their identification is a challenge, and methods depend on indirect measures of activity. We developed a method termed STARR-seq to directly and quantitatively assess enhancer activity for millions of candidates from arbitrary sources of DNA, which enables screens across entire genomes. When applied to the Drosophila genome, STARR-seq identifies thousands of cell type–specific enhancers across a broad continuum of strengths, links differential gene expression to differences in enhancer activity, and creates a genome-wide quantitative enhancer map. This map reveals the highly complex regulation of transcription, with several independent enhancers for both developmental regulators and ubiquitously expressed genes. STARR-seq can be used to identify and quantify enhancer activity in other eukaryotes, including humans.
Genes & Development | 2009
David Gatfield; Gwendal Le Martelot; Charles E. Vejnar; Daniel Gerlach; Olivier Schaad; Fabienne Fleury-Olela; Anna-Liisa Ruskeepää; Matej Orešič; Christine Esau; Evgeny M. Zdobnov; Ueli Schibler
In liver, most metabolic pathways are under circadian control, and hundreds of protein-encoding genes are thus transcribed in a cyclic fashion. Here we show that rhythmic transcription extends to the locus specifying miR-122, a highly abundant, hepatocyte-specific microRNA. Genetic loss-of-function and gain-of-function experiments have identified the orphan nuclear receptor REV-ERBalpha as the major circadian regulator of mir-122 transcription. Although due to its long half-life mature miR-122 accumulates at nearly constant rates throughout the day, this miRNA is tightly associated with control mechanisms governing circadian gene expression. Thus, the knockdown of miR-122 expression via an antisense oligonucleotide (ASO) strategy resulted in the up- and down-regulation of hundreds of mRNAs, of which a disproportionately high fraction accumulates in a circadian fashion. miR-122 has previously been linked to the regulation of cholesterol and lipid metabolism. The transcripts associated with these pathways indeed show the strongest time point-specific changes upon miR-122 depletion. The identification of Pparbeta/delta and the peroxisome proliferator-activated receptor alpha (PPARalpha) coactivator Smarcd1/Baf60a as novel miR-122 targets suggests an involvement of the circadian metabolic regulators of the PPAR family in miR-122-mediated metabolic control.
Nature Genetics | 2014
Cosmas D. Arnold; Daniel Gerlach; Daniel Spies; Jessica A. Matts; Yuliya A. Sytnikova; Michaela Pagani; Nelson C. Lau; Alexander Stark
Phenotypic differences between closely related species are thought to arise primarily from changes in gene expression due to mutations in cis-regulatory sequences (enhancers). However, it has remained unclear how frequently mutations alter enhancer activity or create functional enhancers de novo. Here we use STARR-seq, a recently developed quantitative enhancer assay, to determine genome-wide enhancer activity profiles for five Drosophila species in the constant trans-regulatory environment of Drosophila melanogaster S2 cells. We find that the functions of a large fraction of D. melanogaster enhancers are conserved for their orthologous sequences owing to selection and stabilizing turnover of transcription factor motifs. Moreover, hundreds of enhancers have been gained since the D. melanogaster–Drosophila yakuba split about 11 million years ago without apparent adaptive selection and can contribute to changes in gene expression in vivo. Our finding that enhancer activity is often deeply conserved and frequently gained provides functional insights into regulatory evolution.
Emerging Infectious Diseases | 2009
Caroline Tapparel; Daniel Gerlach; Sandra Van Belle; Lara Turin; Samuel Cordey; Kathrin Mühlemann; Nicolas Regamey; John-David Aubert; Paola M. Soccal; Philippe Eigenmann; Evgeny M. Zdobnov; Laurent Kaiser
Increased genomic diversity of these viruses is demonstrated.
BMC Genomics | 2007
Caroline Tapparel; Thomas Junier; Daniel Gerlach; Samuel Cordey; Sandra Van Belle; Luc Perrin; Evgeny M. Zdobnov; Laurent Kaiser
BackgroundHuman rhinoviruses (HRV), the most frequent cause of respiratory infections, include 99 different serotypes segregating into two species, A and B. Rhinoviruses share extensive genomic sequence similarity with enteroviruses and both are part of the picornavirus family. Nevertheless they differ significantly at the phenotypic level. The lack of HRV full-length genome sequences and the absence of analysis comparing picornaviruses at the whole genome level limit our knowledge of the genomic features supporting these differences.ResultsHere we report complete genome sequences of 12 HRV-A and HRV-B serotypes, more than doubling the current number of available HRV sequences. The whole-genome maximum-likelihood phylogenetic analysis suggests that HRV-B and human enteroviruses (HEV) diverged from the last common ancestor after their separation from HRV-A. On the other hand, compared to HEV, HRV-B are more related to HRV-A in the capsid and 3B-C regions. We also identified the presence of a 2C cis-acting replication element (cre) in HRV-B that is not present in HRV-A, and that had been previously characterized only in HEV. In contrast to HEV viruses, HRV-A and HRV-B share also markedly lower GC content along the whole genome length.ConclusionOur findings provide basis to speculate about both the biological similarities and the differences (e.g. tissue tropism, temperature adaptation or acid lability) of these three groups of viruses.
Nucleic Acids Research | 2009
Daniel Gerlach; Evgenia V. Kriventseva; Nazim Rahman; Charles E. Vejnar; Evgeny M. Zdobnov
MicroRNAs (miRNAs) are short, non-protein coding RNAs that direct the widespread phenomenon of post-transcriptional regulation of metazoan genes. The mature ∼22-nt long RNA molecules are processed from genome-encoded stem-loop structured precursor genes. Hundreds of such genes have been experimentally validated in vertebrate genomes, yet their discovery remains challenging, and substantially higher numbers have been estimated. The miROrtho database (http://cegg.unige.ch/mirortho) presents the results of a comprehensive computational survey of miRNA gene candidates across the majority of sequenced metazoan genomes. We designed and applied a three-tier analysis pipeline: (i) an SVM-based ab initio screen for potent hairpins, plus homologs of known miRNAs, (ii) an orthology delineation procedure and (iii) an SVM-based classifier of the ortholog multiple sequence alignments. The web interface provides direct access to putative miRNA annotations, ortholog multiple alignments, RNA secondary structure conservation, and sequence data. The miROrtho data are conceptually complementary to the miRBase catalog of experimentally verified miRNA sequences, providing a consistent comparative genomics perspective as well as identifying many novel miRNA genes with strong evolutionary support.
PLOS Pathogens | 2012
Samuel Cordey; Tom J. Petty; Manuel Schibler; Yannick Martinez; Daniel Gerlach; Sandra Van Belle; Lara Turin; Evgeny M. Zdobnov; Laurent Kaiser; Caroline Tapparel
Enterovirus 71 (EV71) is one of the most virulent enteroviruses, but the specific molecular features that enhance its ability to disseminate in humans remain unknown. We analyzed the genomic features of EV71 in an immunocompromised host with disseminated disease according to the different sites of infection. Comparison of five full-length genomes sequenced directly from respiratory, gastrointestinal, nervous system, and blood specimens revealed three nucleotide changes that occurred within a five-day period: a non-conservative amino acid change in VP1 located within the BC loop (L97R), a region considered as an immunogenic site and possibly important in poliovirus host adaptation; a conservative amino acid substitution in protein 2B (A38V); and a silent mutation in protein 3D (L175). Infectious clones were constructed using both BrCr (lineage A) and the clinical strain (lineage C) backgrounds containing either one or both non-synonymous mutations. In vitro cell tropism and competition assays revealed that the VP197 Leu to Arg substitution within the BC loop conferred a replicative advantage in SH-SY5Y cells of neuroblastoma origin. Interestingly, this mutation was frequently associated in vitro with a second non-conservative mutation (E167G or E167A) in the VP1 EF loop in neuroblastoma cells. Comparative models of these EV71 VP1 variants were built to determine how the substitutions might affect VP1 structure and/or interactions with host cells and suggest that, while no significant structural changes were observed, the substitutions may alter interactions with host cell receptors. Taken together, our results show that the VP1 BC loop region of EV71 plays a critical role in cell tropism independent of EV71 lineage and, thus, may have contributed to dissemination and neurotropism in the immunocompromised patient.
PLOS ONE | 2011
Werner Wunderli; Astrid Meerbach; Tayfun Guengoer; Christoph Berger; Oliver Greiner; Rosmarie Caduff; Alexandra Trkola; Walter Bossart; Daniel Gerlach; Manuel Schibler; Samuel Cordey; Thomas Alexander Mckee; Sandra Van Belle; Laurent Kaiser; Caroline Tapparel
Infants with severe primary combined immunodeficiency (SCID) and children post-allogeneic hematopoietic stem cell transplantation (HSCT) are extremely susceptible to unusual infections. The lack of generic tools to detect disease-causing viruses among more than 200 potential human viral pathogens represents a major challenge to clinicians and virologists. We investigated retrospectively the causes of a fatal disseminated viral infection with meningoencephalitis in an infant with gamma C-SCID and of chronic gastroenteritis in 2 other infants admitted for HSCT during the same time period. Analysis was undertaken by combining cell culture, electron microscopy and sequence-independent single primer amplification (SISPA) techniques. Caco-2 cells inoculated with fecal samples developed a cytopathic effect and non-enveloped viral particles in infected cells were detected by electron microscopy. SISPA led to the identification of astrovirus as the pathogen. Both sequencing of the capsid gene and the pattern of infection suggested nosocomial transmission from a chronically excreting index case to 2 other patients leading to fatal infection in 1 and to transient disease in the others. Virus-specific, real-time reverse transcription polymerase chain reaction was then performed on different stored samples to assess the extent of infection. Infection was associated with viremia in 2 cases and contributed to death in 1. At autopsy, viral RNA was detected in the brain and different other organs, while immunochemistry confirmed infection of gastrointestinal tissues. This report illustrates the usefulness of the combined use of classical virology procedures and modern molecular tools for the diagnosis of unexpected infections. It illustrates that astrovirus has the potential to cause severe disseminated lethal infection in highly immunocompromised pediatric patients.