Daniel Granados-Fuentes
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Granados-Fuentes.
The Journal of Neuroscience | 2004
Daniel Granados-Fuentes; Laura M. Prolo; Ute Abraham; Erik D. Herzog
The suprachiasmatic nucleus (SCN) of the hypothalamus has been termed the master circadian pacemaker of mammals. Recent discoveries of damped circadian oscillators in other tissues have led to the hypothesis that the SCN synchronizes and sustains daily rhythms in these tissues. We studied the effects of constant lighting (LL) and of SCN lesions on behavioral rhythmicity and Period 1 (Per1) gene activity in the SCN and olfactory bulb (OB). We found that LL had similar effects on cyclic locomotor and feeding behaviors and Per1 expression in the SCN but had no effect on rhythmic Period 1 expression in the OB. LL lengthened the period of locomotor and SCN rhythms by ∼1.6 hr. After 2 weeks in LL, nearly 35% of rats lost behavioral rhythmicity. Of these, 90% showed no rhythm in Per1-driven expression in their SCN. Returning the animals to constant darkness rapidly restored their daily cycles of running wheel activity and gene expression in the SCN. In contrast, the OB remained rhythmic with no significant change in period, even when cultured from animals that had been behaviorally arrhythmic for 1 month. Similarly, we found that lesions of the SCN abolished circadian rhythms in behavior but not in the OB. Together, these results suggest that LL causes the SCN to lose circadian rhythmicity and its ability to coordinate daily locomotor and feeding rhythms. The SCN, however, is not required to sustain all rhythms because the OB continues to oscillate in vivo when the SCN is arrhythmic or ablated.
The Journal of Neuroscience | 2006
Daniel Granados-Fuentes; Alan Tseng; Erik D. Herzog
Recently, it has been shown that multiple mammalian cell types express daily rhythms in vitro. Although the suprachiasmatic nucleus (SCN) of the hypothalamus is known to regulate a wide range of circadian behaviors, the role for intrinsic rhythmicity in other tissues is unknown. We tested whether the main olfactory bulb (OB) of mice mediates daily changes in olfaction. We found circadian rhythms in cedar oil-induced c-Fos, a protein marker of cellular excitation, in the mitral and granular layers of the OB and in the piriform cortex (PC). These oscillations persisted in constant darkness with a fourfold change in amplitude and a peak ∼4 h after the onset of daily locomotor activity. Electrolytic lesions of the SCN abolished circadian locomotor rhythms, but not odor-induced c-Fos rhythms in the OB or PC. Furthermore, removal of the OB abolished spontaneous circadian cycling of c-Fos in the PC, shortened the free-running period of locomotor rhythms, and accelerated re-entrainment after a 6 h advance and slowed re-entrainment after a 6 h delay in the light schedule. OB ablation or odorant altered the amplitude of c-Fos rhythms in the SCN and ablation of one OB abolished c-Fos rhythms in the ipsilateral PC, but not in the contralateral OB and PC. We conclude that the OB comprises a master circadian pacemaker, which enhances olfactory responsivity each night, drives rhythms in the PC, and interacts with the SCN to coordinate other daily behaviors.
The Journal of Neuroscience | 2005
Ute Abraham; Julie L. Prior; Daniel Granados-Fuentes; David Piwnica-Worms; Erik D. Herzog
Behavioral and physiological circadian rhythms in mammals are controlled by a master pacemaker in the hypothalamic suprachiasmatic nuclei (SCN). Recently, circadian oscillations of hormone secretion, clock gene expression, and electrical activity have been demonstrated in explants of other brain regions. This suggests that some extra-SCN brain regions contain a functional, SCN-independent circadian clock, but in vivo evidence for intrinsic pacemaking is still lacking. We developed a novel method to image bioluminescence in vivo from the main olfactory bulbs (OB) of intact and SCN-lesioned (SCNX) Period1::luciferase rats for 2 d in constant darkness. The OBs expressed circadian rhythms in situ with a reliable twofold increase from day to night, similar to the phase and amplitude of ex vivo rhythms. In vivo cycling persisted for at least 1 month in the absence of the SCN. To assess indirectly in vivo rhythmicity of other brain areas, we measured the phase-dependence of their in vitro rhythms on the time of surgery. Surgery reliably reset the phase of the pineal gland and vascular organ of the lamina terminalis (VOLT) harvested from SCNX rats but had little effect on the phase of the OB. We deduce that the SCN and OB contain self-sustained circadian oscillators, whereas the pineal gland and VOLT are weak oscillators that require input from the SCN to show coordinated circadian rhythms. We conclude that the mammalian brain comprises a diverse set of SCN-dependent and SCN-independent circadian oscillators.
European Journal of Neuroscience | 2004
Daniel Granados-Fuentes; Meera T. Saxena; Laura M. Prolo; Sara J. Aton; Erik D. Herzog
Circadian pacemakers drive many daily molecular, physiological and behavioural rhythms. We investigated whether the main olfactory bulb is a functional circadian pacemaker in rats. Long‐term, multielectrode recordings revealed that individual, cultured bulb neurons expressed near 24‐h oscillations in firing rate. Real‐time recordings of Period1 gene activity showed that a population of cells within the bulb expressed synchronized rhythmicity starting on embryonic day 19. This rhythmicity was intrinsic to the mitral, and not the granule, cell layer, entrainable to physiological temperature cycles and temperature compensated in its period. However, removal of the olfactory bulbs had no effect on running wheel behaviour. These results indicate that individual mitral/tufted cells are competent circadian pacemakers which normally synchronize to each other. The daily rhythms in gene expression and firing rate intrinsic to the olfactory bulb are not required for circadian patterns of locomotion, indicating that they are involved in rhythms outside the canonical circadian system.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Sungwon An; Rich Harang; Kirsten Meeker; Daniel Granados-Fuentes; Connie Tsai; Cristina Mazuski; Jihee Kim; Francis J. Doyle; Linda R. Petzold; Erik D. Herzog
Significance Daily rhythms in behavior depend on the coordinated cycling of circadian neurons in the brain. Here, we found that a neuropeptide that is required for synchrony among circadian neurons also, surprisingly, dose-dependently reduces synchrony among circadian cells. We find this allows the system to adjust how quickly it entrains to environmental cycles. We propose that treatments that enhance this signaling pathway could reduce jet lag associated with shift work and travel across time zones. Shift work or transmeridian travel can desynchronize the bodys circadian rhythms from local light–dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or “phase tumbling”, could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.
Journal of Biological Rhythms | 2011
Daniel Granados-Fuentes; Gal Ben-Josef; Gavin Perry; Donald A. Wilson; Alexander Sullivan-Wilson; Erik D. Herzog
The suprachiasmatic nucleus (SCN) regulates a wide range of daily behaviors and has been described as the master circadian pacemaker. The role of daily rhythmicity in other tissues, however, is unknown. We hypothesized that circadian changes in olfactory discrimination depend on a genetic circadian oscillator outside the SCN. We developed an automated assay to monitor olfactory discrimination in individual mice throughout the day. We found olfactory sensitivity increased approximately 6-fold from a minimum during the day to a peak in the early night. This circadian rhythm was maintained in SCN-lesioned mice and mice deficient for the Npas2 gene but was lost in mice lacking Bmal1 or both Per1 and Per2 genes. We conclude that daily rhythms in olfactory sensitivity depend on the expression of canonical clock genes. Olfaction is, thus, the first circadian behavior that is not based on locomotor activity and does not require the SCN.
Neuroreport | 1999
Mauricio Díaz-Muñoz; Myrna A. R. Dent; Daniel Granados-Fuentes; Adam C. Hall; Arturo Hernandez-Cruz; Mary E. Harrington; Raúl Aguilar-Roblero
We examined the temporal modulation of intracellular calcium release channels in the suprachiasmatic nucleus (SCN). We found a circadian rhythm in [3H]ryanodine binding that was specific to the SCN. The peak in the rhythm occurred at CT 7 and was due to an increase in Bmax, which correlated well with immunoblots showing an increase in RyR-2 expression in the SCN. Double immunohistochemical studies showed that RyR-2 was expressed exclusively in neurons. Ryanodine and caffeine applied around CT 7-9 advanced the clock phase in a hamster brain slice preparation. No rhythm of IP3R was seen in any of the brain areas studied. Our results indicate that RyR-2 exhibits an endogenous rhythm, which influences the intracellular calcium dynamics and thus modulates SCN activity.
Experimental Neurology | 2013
Daniel Granados-Fuentes; Erik D. Herzog
Daily rhythms in neural activity underlie circadian rhythms in sleep-wake and other daily behaviors. The cells within the mammalian suprachiasmatic nucleus (SCN) are intrinsically capable of 24-h timekeeping. These cells synchronize with each other and with local environmental cycles to drive coherent rhythms in daily behaviors. Recent studies have identified a small number of neuropeptides critical for this ability to synchronize and sustain coordinated daily rhythms. This review highlights the roles of specific intracellular and intercellular signals within the SCN that underlie circadian synchrony.
The Journal of Neuroscience | 2012
Daniel Granados-Fuentes; Aaron J. Norris; Yarimar Carrasquillo; Jeanne M. Nerbonne; Erik D. Herzog
Neurons in the suprachiasmatic nucleus (SCN) display coordinated circadian changes in electrical activity that are critical for daily rhythms in physiology, metabolism, and behavior. SCN neurons depolarize spontaneously and fire repetitively during the day and hyperpolarize, drastically reducing firing rates, at night. To explore the hypothesis that rapidly activating and inactivating A-type (IA) voltage-gated K+ (Kv) channels, which are also active at subthreshold membrane potentials, are critical regulators of the excitability of SCN neurons, we examined locomotor activity and SCN firing in mice lacking Kv1.4 (Kv1.4−/−), Kv4.2 (Kv4.2−/−), or Kv4.3 (Kv4.3−/−), the pore-forming (α) subunits of IA channels. Mice lacking either Kv1.4 or Kv4.2 α subunits have markedly shorter (0.5 h) periods of locomotor activity than wild-type (WT) mice. In vitro extracellular multi-electrode recordings revealed that Kv1.4−/− and Kv4.2−/− SCN neurons display circadian rhythms in repetitive firing, but with shorter periods (0.5 h) than WT cells. In contrast, the periods of wheel-running activity in Kv4.3−/− mice and firing in Kv4.3−/− SCN neurons were indistinguishable from WT animals and neurons. Quantitative real-time PCR revealed that the transcripts encoding all three Kv channel α subunits, Kv1.4, Kv4.2, and Kv4.3, are expressed constitutively throughout the day and night in the SCN. Together, these results demonstrate that Kv1.4- and Kv4.2-encoded IA channels regulate the intrinsic excitability of SCN neurons during the day and night and determine the period and amplitude of circadian rhythms in SCN neuron firing and locomotor behavior.
Proceedings of the National Academy of Sciences of the United States of America | 2016
John H. Abel; Kirsten Meeker; Daniel Granados-Fuentes; Peter C. St. John; Thomas Wang; Benjamin B. Bales; Francis J. Doyle; Erik D. Herzog; Linda R. Petzold
Significance In mammals, circadian rhythms are controlled by a network of neurons in the brain. The structure of this network dictates organism-wide behavior and adaptation to the environment. We used a neurotoxin to desynchronize this circadian network and then used tools from information theory to determine which cells communicate to establish synchronization. Our results show that this functional network consists of two densely-connected cores, surrounded by sparsely connected shell regions. These findings represent the first time, to our knowledge, that this network has been examined at single cell resolution and show that the importance of these core network regions is independent of light input. In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.