Daniel H. Haft
J. Craig Venter Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel H. Haft.
Nature | 2002
Malcolm J. Gardner; Neil Hall; Eula Fung; Owen White; Matthew Berriman; Richard W. Hyman; Jane M. Carlton; Arnab Pain; Karen E. Nelson; Sharen Bowman; Ian T. Paulsen; Keith D. James; Jonathan A. Eisen; Kim Rutherford; Alister Craig; Sue Kyes; Man Suen Chan; Vishvanath Nene; Shamira Shallom; Bernard B. Suh; Jeremy Peterson; Sam Angiuoli; Mihaela Pertea; Jonathan E. Allen; Jeremy D. Selengut; Daniel H. Haft; Michael W. Mather; Akhil B. Vaidya; David M. A. Martin; Alan H. Fairlamb
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.
Nature | 2000
John F. Heidelberg; Jonathan A. Eisen; William C. Nelson; Rebecca A. Clayton; Michelle L. Gwinn; Robert J. Dodson; Daniel H. Haft; Erin Hickey; Jeremy Peterson; Lowell Umayam; Steven R. Gill; Karen E. Nelson; Timothy D. Read; Delwood Richardson; Maria D. Ermolaeva; Jessica Vamathevan; Steven Bass; Haiying Qin; Ioana Dragoi; Patrick Sellers; Lisa McDonald; Teresa Utterback; Robert D. Fleishmann; William C. Nierman; Owen White; Hamilton O. Smith; Rita R. Colwell; John J. Mekalanos; J. Craig Venter; Claire M. Fraser
Here we determine the complete genomic sequence of the Gram negative, γ-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the γ-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host ‘addiction’ genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.
Nature | 1999
Karen E. Nelson; Rebecca A. Clayton; Steven R. Gill; Michelle L. Gwinn; Robert J. Dodson; Daniel H. Haft; Erin Hickey; Jeremy Peterson; William C. Nelson; Karen A. Ketchum; Lisa McDonald; Teresa Utterback; Joel A. Malek; Katja D. Linher; Mina M. Garrett; Ashley M. Stewart; Matthew D. Cotton; Matthew S. Pratt; Cheryl A. Phillips; Delwood Richardson; John F. Heidelberg; Granger Sutton; Robert D. Fleischmann; Jonathan A. Eisen; Owen White; Hamilton O. Smith; J. Craig Venter; Claire M. Fraser
The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of other thermophilic Eubacteria and Archaea. Of the Eubacteria sequenced to date, T.maritima has the highest percentage (24%) of genes that are most similar to archaeal genes. Eighty-one archaeal-like genes are clustered in 15 regions of the T. maritima genome that range in size from 4 to 20 kilobases. Conservation of gene order between T. maritima and Archaea in many of the clustered regions suggests that lateral gene transfer may have occurred between thermophilic Eubacteria and Archaea.
Nucleic Acids Research | 2009
Sarah Hunter; Rolf Apweiler; Teresa K. Attwood; Amos Marc Bairoch; Alex Bateman; David Binns; Peer Bork; Ujjwal Das; Louise Daugherty; Lauranne Duquenne; Robert D. Finn; Julian Gough; Daniel H. Haft; Nicolas Hulo; Daniel Kahn; Elizabeth Kelly; Aurélie Laugraud; Ivica Letunic; David M. Lonsdale; Rodrigo Lopez; John Maslen; Craig McAnulla; Jennifer McDowall; Jaina Mistry; Alex L. Mitchell; Nicola Mulder; Darren A. Natale; Christine A. Orengo; Antony F. Quinn; Jeremy D. Selengut
The InterPro database (http://www.ebi.ac.uk/interpro/) integrates together predictive models or ‘signatures’ representing protein domains, families and functional sites from multiple, diverse source databases: Gene3D, PANTHER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY and TIGRFAMs. Integration is performed manually and approximately half of the total ∼58 000 signatures available in the source databases belong to an InterPro entry. Recently, we have started to also display the remaining un-integrated signatures via our web interface. Other developments include the provision of non-signature data, such as structural data, in new XML files on our FTP site, as well as the inclusion of matchless UniProtKB proteins in the existing match XML files. The web interface has been extended and now links out to the ADAN predicted protein–protein interaction database and the SPICE and Dasty viewers. The latest public release (v18.0) covers 79.8% of UniProtKB (v14.1) and consists of 16 549 entries. InterPro data may be accessed either via the web address above, via web services, by downloading files by anonymous FTP or by using the InterProScan search software (http://www.ebi.ac.uk/Tools/InterProScan/).
Nucleic Acids Research | 2012
Sarah Hunter; P. D. Jones; Alex L. Mitchell; Rolf Apweiler; Teresa K. Attwood; Alex Bateman; Thomas Bernard; David Binns; Peer Bork; Sarah W. Burge; Edouard de Castro; Penny Coggill; Matthew Corbett; Ujjwal Das; Louise Daugherty; Lauranne Duquenne; Robert D. Finn; Matthew Fraser; Julian Gough; Daniel H. Haft; Nicolas Hulo; Daniel Kahn; Elizabeth Kelly; Ivica Letunic; David M. Lonsdale; Rodrigo Lopez; John Maslen; Craig McAnulla; Jennifer McDowall; Conor McMenamin
InterPro (http://www.ebi.ac.uk/interpro/) is a database that integrates diverse information about protein families, domains and functional sites, and makes it freely available to the public via Web-based interfaces and services. Central to the database are diagnostic models, known as signatures, against which protein sequences can be searched to determine their potential function. InterPro has utility in the large-scale analysis of whole genomes and meta-genomes, as well as in characterizing individual protein sequences. Herein we give an overview of new developments in the database and its associated software since 2009, including updates to database content, curation processes and Web and programmatic interfaces.
Nature | 2003
Timothy D. Read; Scott N. Peterson; Nicolas J. Tourasse; Les W. Baillie; Ian T. Paulsen; Karen E. Nelson; Hervé Tettelin; Derrick E. Fouts; Jonathan A. Eisen; Steven R. Gill; E. Holtzapple; Ole Andreas Økstad; Erlendur Helgason; Jennifer Rilstone; Martin Wu; James F. Kolonay; Maureen J. Beanan; Robert J. Dodson; Lauren M. Brinkac; Michelle L. Gwinn; Robert T. DeBoy; Ramana Madpu; Sean C. Daugherty; A. Scott Durkin; Daniel H. Haft; William C. Nelson; Jeremy Peterson; Mihai Pop; Hoda Khouri; Diana Radune
Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity—including haemolysins, phospholipases and iron acquisition functions—and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.
Nucleic Acids Research | 2015
Alex L. Mitchell; Hsin-Yu Chang; Louise Daugherty; Matthew Fraser; Sarah Hunter; Rodrigo Lopez; Craig McAnulla; Conor McMenamin; Gift Nuka; Sebastien Pesseat; Amaia Sangrador-Vegas; Maxim Scheremetjew; Claudia Rato; Siew-Yit Yong; Alex Bateman; Marco Punta; Teresa K. Attwood; Christian J. A. Sigrist; Nicole Redaschi; Catherine Rivoire; Ioannis Xenarios; Daniel Kahn; Dominique Guyot; Peer Bork; Ivica Letunic; Julian Gough; Matt E. Oates; Daniel H. Haft; Hongzhan Huang; Darren A. Natale
The InterPro database (http://www.ebi.ac.uk/interpro/) is a freely available resource that can be used to classify sequences into protein families and to predict the presence of important domains and sites. Central to the InterPro database are predictive models, known as signatures, from a range of different protein family databases that have different biological focuses and use different methodological approaches to classify protein families and domains. InterPro integrates these signatures, capitalizing on the respective strengths of the individual databases, to produce a powerful protein classification resource. Here, we report on the status of InterPro as it enters its 15th year of operation, and give an overview of new developments with the database and its associated Web interfaces and software. In particular, the new domain architecture search tool is described and the process of mapping of Gene Ontology terms to InterPro is outlined. We also discuss the challenges faced by the resource given the explosive growth in sequence data in recent years. InterPro (version 48.0) contains 36 766 member database signatures integrated into 26 238 InterPro entries, an increase of over 3993 entries (5081 signatures), since 2012.
Proceedings of the National Academy of Sciences of the United States of America | 2003
C. Robin Buell; Vinita Joardar; Magdalen Lindeberg; Jeremy D. Selengut; Ian T. Paulsen; Michelle L. Gwinn; Robert J. Dodson; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Sean C. Daugherty; Lauren M. Brinkac; Maureen J. Beanan; Daniel H. Haft; William C. Nelson; Tanja Davidsen; Nikhat Zafar; Liwei Zhou; Jia Liu; Qiaoping Yuan; Hoda Khouri; Nadia Fedorova; Bao Tran; Daniel Russell; Kristi Berry; Teresa Utterback; Susan Van Aken; Tamara Feldblyum; Mark D'Ascenzo
We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.
PLOS Computational Biology | 2005
Daniel H. Haft; Jeremy D. Selengut; Emmanuel F. Mongodin; Karen E. Nelson
Clustered regularly interspaced short palindromic repeats (CRISPRs) are a family of DNA direct repeats found in many prokaryotic genomes. Repeats of 21–37 bp typically show weak dyad symmetry and are separated by regularly sized, nonrepetitive spacer sequences. Four CRISPR-associated (Cas) protein families, designated Cas1 to Cas4, are strictly associated with CRISPR elements and always occur near a repeat cluster. Some spacers originate from mobile genetic elements and are thought to confer “immunity” against the elements that harbor these sequences. In the present study, we have systematically investigated uncharacterized proteins encoded in the vicinity of these CRISPRs and found many additional protein families that are strictly associated with CRISPR loci across multiple prokaryotic species. Multiple sequence alignments and hidden Markov models have been built for 45 Cas protein families. These models identify family members with high sensitivity and selectivity and classify key regulators of development, DevR and DevS, in Myxococcus xanthus as Cas proteins. These identifications show that CRISPR/cas gene regions can be quite large, with up to 20 different, tandem-arranged cas genes next to a repeat cluster or filling the region between two repeat clusters. Distinctive subsets of the collection of Cas proteins recur in phylogenetically distant species and correlate with characteristic repeat periodicity. The analyses presented here support initial proposals of mobility of these units, along with the likelihood that loci of different subtypes interact with one another as well as with host cell defensive, replicative, and regulatory systems. It is evident from this analysis that CRISPR/cas loci are larger, more complex, and more heterogeneous than previously appreciated.
Molecular Microbiology | 2002
Sherwood Casjens; Nanette Palmer; Rene van Vugt; Wai Mun Huang; Brian Stevenson; Patricia A. Rosa; Raju Lathigra; Granger Sutton; Jeremy Peterson; Robert J. Dodson; Daniel H. Haft; Erin Hickey; Michelle L. Gwinn; Owen White; Claire M. Fraser
We have determined that Borrelia burgdorferi strain B31 MI carries 21 extrachromosomal DNA elements, the largest number known for any bacterium. Among these are 12 linear and nine circular plasmids, whose sequences total 610 694 bp. We report here the nucleotide sequence of three linear and seven circular plasmids (comprising 290 546 bp) in this infectious isolate. This completes the genome sequencing project for this organism; its genome size is 1 521 419 bp (plus about 2000 bp of undetermined telomeric sequences). Analysis of the sequence implies that there has been extensive and sometimes rather recent DNA rearrangement among a number of the linear plasmids. Many of these events appear to have been mediated by recombinational processes that formed duplications. These many regions of similarity are reflected in the fact that most plasmid genes are members of one of the genomes 161 paralogous gene families; 107 of these gene families, which vary in size from two to 41 members, contain at least one plasmid gene. These rearrangements appear to have contributed to a surprisingly large number of apparently non‐functional pseudogenes, a very unusual feature for a prokaryotic genome. The presence of these damaged genes suggests that some of the plasmids may be in a period of rapid evolution. The sequence predicts 535 plasmid genes ≥300 bp in length that may be intact and 167 apparently mutationally damaged and/or unexpressed genes (pseudogenes). The large majority, over 90%, of genes on these plasmids have no convincing similarity to genes outside Borrelia, suggesting that they perform specialized functions.