Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle L. Gwinn is active.

Publication


Featured researches published by Michelle L. Gwinn.


Nature | 1997

Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi

Claire M. Fraser; Sherwood Casjens; Wai Mun Huang; Granger Sutton; Rebecca A. Clayton; Raju Lathigra; Owen White; Karen A. Ketchum; Robert J. Dodson; Erin Hickey; Michelle L. Gwinn; Brian A. Dougherty; Jean Francois Tomb; Robert D. Fleischmann; Delwood Richardson; Jeremy Peterson; Anthony R. Kerlavage; John Quackenbush; Mark S. Hanson; René Van Vugt; Nanette Palmer; Mark D. Adams; Jeannine D. Gocayne; Janice Weidman; Teresa Utterback; Larry Watthey; Lisa McDonald; Patricia Artiach; Cheryl Bowman; Stacey Garland

The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.


Nature | 2000

DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae

John F. Heidelberg; Jonathan A. Eisen; William C. Nelson; Rebecca A. Clayton; Michelle L. Gwinn; Robert J. Dodson; Daniel H. Haft; Erin Hickey; Jeremy Peterson; Lowell Umayam; Steven R. Gill; Karen E. Nelson; Timothy D. Read; Delwood Richardson; Maria D. Ermolaeva; Jessica Vamathevan; Steven Bass; Haiying Qin; Ioana Dragoi; Patrick Sellers; Lisa McDonald; Teresa Utterback; Robert D. Fleishmann; William C. Nierman; Owen White; Hamilton O. Smith; Rita R. Colwell; John J. Mekalanos; J. Craig Venter; Claire M. Fraser

Here we determine the complete genomic sequence of the Gram negative, γ-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the γ-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host ‘addiction’ genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.


Nature | 1999

Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima.

Karen E. Nelson; Rebecca A. Clayton; Steven R. Gill; Michelle L. Gwinn; Robert J. Dodson; Daniel H. Haft; Erin Hickey; Jeremy Peterson; William C. Nelson; Karen A. Ketchum; Lisa McDonald; Teresa Utterback; Joel A. Malek; Katja D. Linher; Mina M. Garrett; Ashley M. Stewart; Matthew D. Cotton; Matthew S. Pratt; Cheryl A. Phillips; Delwood Richardson; John F. Heidelberg; Granger Sutton; Robert D. Fleischmann; Jonathan A. Eisen; Owen White; Hamilton O. Smith; J. Craig Venter; Claire M. Fraser

The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of other thermophilic Eubacteria and Archaea. Of the Eubacteria sequenced to date, T.maritima has the highest percentage (24%) of genes that are most similar to archaeal genes. Eighty-one archaeal-like genes are clustered in 15 regions of the T. maritima genome that range in size from 4 to 20 kilobases. Conservation of gene order between T. maritima and Archaea in many of the clustered regions suggests that lateral gene transfer may have occurred between thermophilic Eubacteria and Archaea.


Nature | 1997

The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus.

Hans-Peter Klenk; Rebecca A. Clayton; Jean-Francois Tomb; Owen White; Karen E. Nelson; Karen A. Ketchum; Robert J. Dodson; Michelle L. Gwinn; Erin Hickey; Jeremy Peterson; Delwood Richardson; Anthony R. Kerlavage; David E. Graham; Nikos Kyrpides; Robert D. Fleischmann; John Quackenbush; Norman H. Lee; Granger Sutton; Steven R. Gill; Ewen F. Kirkness; Brian A. Dougherty; Keith McKenney; Mark D. Adams; Brendan J. Loftus; Scott N. Peterson; Claudia I. Reich; Leslie K. McNeil; Jonathan H. Badger; Anna Glodek; Lixin Zhou

Archaeoglobus fulgidus is the first sulphur-metabolizing organism to have its genome sequence determined. Its genome of 2,178,400 base pairs contains 2,436 open reading frames (ORFs). The information processing systems and the biosynthetic pathways for essential components (nucleotides, amino acids and cofactors) have extensive correlation with their counterparts in the archaeon Methanococcus jannaschii . The genomes of these two Archaea indicate dramatic differences in the way these organisms sense their environment, perform regulatory and transport functions, and gain energy. In contrast to M. jannaschii , A. fulgidus has fewer restriction–modification systems, and none of its genes appears to contain inteins. A quarter (651 ORFs) of the A. fulgidus genome encodes functionally uncharacterized yet conserved proteins, two-thirds of which are shared with M. jannaschii (428 ORFs). Another quarter of the genome encodes new proteins indicating substantial archaeal gene diversity.


Nature | 2003

The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria

Timothy D. Read; Scott N. Peterson; Nicolas J. Tourasse; Les W. Baillie; Ian T. Paulsen; Karen E. Nelson; Hervé Tettelin; Derrick E. Fouts; Jonathan A. Eisen; Steven R. Gill; E. Holtzapple; Ole Andreas Økstad; Erlendur Helgason; Jennifer Rilstone; Martin Wu; James F. Kolonay; Maureen J. Beanan; Robert J. Dodson; Lauren M. Brinkac; Michelle L. Gwinn; Robert T. DeBoy; Ramana Madpu; Sean C. Daugherty; A. Scott Durkin; Daniel H. Haft; William C. Nelson; Jeremy Peterson; Mihai Pop; Hoda Khouri; Diana Radune

Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity—including haemolysins, phospholipases and iron acquisition functions—and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000

C. Robin Buell; Vinita Joardar; Magdalen Lindeberg; Jeremy D. Selengut; Ian T. Paulsen; Michelle L. Gwinn; Robert J. Dodson; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Sean C. Daugherty; Lauren M. Brinkac; Maureen J. Beanan; Daniel H. Haft; William C. Nelson; Tanja Davidsen; Nikhat Zafar; Liwei Zhou; Jia Liu; Qiaoping Yuan; Hoda Khouri; Nadia Fedorova; Bao Tran; Daniel Russell; Kristi Berry; Teresa Utterback; Susan Van Aken; Tamara Feldblyum; Mark D'Ascenzo

We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.


Molecular Microbiology | 2002

A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi

Sherwood Casjens; Nanette Palmer; Rene van Vugt; Wai Mun Huang; Brian Stevenson; Patricia A. Rosa; Raju Lathigra; Granger Sutton; Jeremy Peterson; Robert J. Dodson; Daniel H. Haft; Erin Hickey; Michelle L. Gwinn; Owen White; Claire M. Fraser

We have determined that Borrelia burgdorferi strain B31 MI carries 21 extrachromosomal DNA elements, the largest number known for any bacterium. Among these are 12 linear and nine circular plasmids, whose sequences total 610 694 bp. We report here the nucleotide sequence of three linear and seven circular plasmids (comprising 290 546 bp) in this infectious isolate. This completes the genome sequencing project for this organism; its genome size is 1 521 419 bp (plus about 2000 bp of undetermined telomeric sequences). Analysis of the sequence implies that there has been extensive and sometimes rather recent DNA rearrangement among a number of the linear plasmids. Many of these events appear to have been mediated by recombinational processes that formed duplications. These many regions of similarity are reflected in the fact that most plasmid genes are members of one of the genomes 161 paralogous gene families; 107 of these gene families, which vary in size from two to 41 members, contain at least one plasmid gene. These rearrangements appear to have contributed to a surprisingly large number of apparently non‐functional pseudogenes, a very unusual feature for a prokaryotic genome. The presence of these damaged genes suggests that some of the plasmids may be in a period of rapid evolution. The sequence predicts 535 plasmid genes ≥300 bp in length that may be intact and 167 apparently mutationally damaged and/or unexpressed genes (pseudogenes). The large majority, over 90%, of genes on these plasmids have no convincing similarity to genes outside Borrelia, suggesting that they perform specialized functions.


Journal of Bacteriology | 2002

Whole-Genome Comparison of Mycobacterium tuberculosis Clinical and Laboratory Strains

Robert D. Fleischmann; D. Alland; Jonathan A. Eisen; L. Carpenter; Owen White; Jeremy Peterson; Robert T. DeBoy; Robert J. Dodson; Michelle L. Gwinn; Daniel H. Haft; Erin Hickey; James F. Kolonay; William C. Nelson; Lowell Umayam; Maria D. Ermolaeva; Arthur L. Delcher; Terry Utterback; Janice Weidman; Hoda Khouri; John Gill; A. Mikula; W. Bishai; W. R. Jacobs; Venter Jc; Claire M. Fraser

Virulence and immunity are poorly understood in Mycobacterium tuberculosis. We sequenced the complete genome of the M. tuberculosis clinical strain CDC1551 and performed a whole-genome comparison with the laboratory strain H37Rv in order to identify polymorphic sequences with potential relevance to disease pathogenesis, immunity, and evolution. We found large-sequence and single-nucleotide polymorphisms in numerous genes. Polymorphic loci included a phospholipase C, a membrane lipoprotein, members of an adenylate cyclase gene family, and members of the PE/PPE gene family, some of which have been implicated in virulence or the host immune response. Several gene families, including the PE/PPE gene family, also had significantly higher synonymous and nonsynonymous substitution frequencies compared to the genome as a whole. We tested a large sample of M. tuberculosis clinical isolates for a subset of the large-sequence and single-nucleotide polymorphisms and found widespread genetic variability at many of these loci. We performed phylogenetic and epidemiological analysis to investigate the evolutionary relationships among isolates and the origins of specific polymorphic loci. A number of these polymorphisms appear to have occurred multiple times as independent events, suggesting that these changes may be under selective pressure. Together, these results demonstrate that polymorphisms among M. tuberculosis strains are more extensive than initially anticipated, and genetic variation may have an important role in disease pathogenesis and immunity.


Nature Biotechnology | 2005

Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5

Ian T. Paulsen; Caroline M. Press; Jacques Ravel; Donald Y. Kobayashi; Garry Myers; Dmitri V. Mavrodi; Robert T. DeBoy; Rekha Seshadri; Qinghu Ren; Ramana Madupu; Robert J. Dodson; A. Scott Durkin; Lauren M Brinkac; Sean C. Daugherty; Stephen A Sullivan; M. J. Rosovitz; Michelle L. Gwinn; Liwei Zhou; Davd J Schneider; Samuel Cartinhour; William C. Nelson; Janice Weidman; Kisha Watkins; Kevin Tran; Hoda Khouri; Elizabeth A. Pierson; Leland S. Pierson; Linda S. Thomashow; Joyce E. Loper

Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5s recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Complete genome sequence of Caulobacter crescentus

William C. Nierman; Tamara Feldblyum; Michael T. Laub; Ian T. Paulsen; Karen E. Nelson; Jonathan A. Eisen; John F. Heidelberg; M. R. K. Alley; Noriko Ohta; Janine R. Maddock; Isabel Potocka; William C. Nelson; Austin Newton; Craig Stephens; Nikhil D. Phadke; Bert Ely; Robert T. DeBoy; Robert J. Dodson; A. Scott Durkin; Michelle L. Gwinn; Daniel H. Haft; James F. Kolonay; John Smit; M. B. Craven; Hoda Khouri; Jyoti Shetty; Kristi Berry; Teresa Utterback; Kevin Tran; Alex M. Wolf

The complete genome sequence of Caulobacter crescentus was determined to be 4,016,942 base pairs in a single circular chromosome encoding 3,767 genes. This organism, which grows in a dilute aquatic environment, coordinates the cell division cycle and multiple cell differentiation events. With the annotated genome sequence, a full description of the genetic network that controls bacterial differentiation, cell growth, and cell cycle progression is within reach. Two-component signal transduction proteins are known to play a significant role in cell cycle progression. Genome analysis revealed that the C. crescentus genome encodes a significantly higher number of these signaling proteins (105) than any bacterial genome sequenced thus far. Another regulatory mechanism involved in cell cycle progression is DNA methylation. The occurrence of the recognition sequence for an essential DNA methylating enzyme that is required for cell cycle regulation is severely limited and shows a bias to intergenic regions. The genome contains multiple clusters of genes encoding proteins essential for survival in a nutrient poor habitat. Included are those involved in chemotaxis, outer membrane channel function, degradation of aromatic ring compounds, and the breakdown of plant-derived carbon sources, in addition to many extracytoplasmic function sigma factors, providing the organism with the ability to respond to a wide range of environmental fluctuations. C. crescentus is, to our knowledge, the first free-living α-class proteobacterium to be sequenced and will serve as a foundation for exploring the biology of this group of bacteria, which includes the obligate endosymbiont and human pathogen Rickettsia prowazekii, the plant pathogen Agrobacterium tumefaciens, and the bovine and human pathogen Brucella abortus.

Collaboration


Dive into the Michelle L. Gwinn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William C. Nelson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel H. Haft

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Jeremy Peterson

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen E. Nelson

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Owen White

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Erin Hickey

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Hoda Khouri

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Robert T. DeBoy

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge