Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel H. Hwang is active.

Publication


Featured researches published by Daniel H. Hwang.


Journal of Lipid Research | 2003

Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids.

Joo Y. Lee; Anthony Plakidas; Won H. Lee; Anne Heikkinen; Prithiva Chanmugam; George A. Bray; Daniel H. Hwang

Human subjects consuming fish oil showed a significant suppression of cyclooxygenase-2 (COX-2) expression in blood monocytes when stimulated in vitro with lipopolysaccharide (LPS), an agonist for Toll-like receptor 4 (TLR4). Results with a murine monocytic cell line (RAW 264.7) stably transfected with COX-2 promoter reporter gene also demonstrated that LPS-induced COX-2 expression was preferentially inhibited by docosahexaenoic acid (DHA, C22:6n-3) and eicosapentaenoic acid (EPA, C20:5n-3), the major n-3 polyunsaturated fatty acids (PUFAs) present in fish oil. Additionally, DHA and EPA significantly suppressed COX-2 expression induced by a synthetic lipopeptide, a TLR2 agonist. These results correlated with the preferential suppression of LPS- or lipopeptide-induced NFκB activation by DHA and EPA. The target of inhibition by DHA is TLR itself or its associated molecules, but not downstream signaling components. In contrast, COX-2 expression by TLR2 or TRL4 agonist was potentiated by lauric acid, a saturated fatty acid. These results demonstrate that inhibition of COX-2 expression by n-3 PUFAs is mediated through the modulation of TLR-mediated signaling pathways. Thus, the beneficial or detrimental effects of different types of dietary fatty acids on the risk of the development of many chonic inflammatory diseases may be in part mediated through the modulation of TLRs.


Journal of Biological Chemistry | 2003

Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids.

Joo Young Lee; Jianping Ye; Zhanguo Gao; Hyung S. Youn; Won H. Lee; Ling Zhao; Nywana Sizemore; Daniel H. Hwang

Toll-like receptor-4 (TLR4) can be activated by nonbacterial agonists, including saturated fatty acids. However, downstream signaling pathways activated by nonbacterial agonists are not known. Thus, we determined the downstream signaling pathways derived from saturated fatty acid-induced TLR4 activation. Saturated fatty acid (lauric acid)-induced NFκB activation was inhibited by a dominant-negative mutant of TLR4, MyD88, IRAK-1, TRAF6, or IκBα in macrophages (RAW264.7) and 293T cells transfected with TLR4 and MD2. Lauric acid induced the transient phosphorylation of AKT. LY294002, dominant-negative (DN) phosphatidylinositol 3-kinase (PI3K), or AKT(DN) inhibited NFκB activation, p65 transactivation, and cyclooxygenase-2 (COX-2) expression induced by lauric acid or constitutively active (CA) TLR4. AKT(DN) blocked MyD88-induced NFκB activation, suggesting that AKT is a MyD88-dependent downstream signaling component of TLR4. AKT(CA) was sufficient to induce NFκB activation and COX-2 expression. These results demonstrate that NFκB activation and COX-2 expression induced by lauric acid are at least partly mediated through the TLR4/PI3K/AKT signaling pathway. In contrast, docosahexaenoic acid (DHA) inhibited the phosphorylation of AKT induced by lipopolysaccharide or lauric acid. DHA also suppressed NFκB activation induced by TLR4(CA), but not MyD88(CA) or AKT(CA), suggesting that the molecular targets of DHA are signaling components upstream of MyD88 and AKT. Together, these results suggest that saturated and polyunsaturated fatty acids reciprocally modulate the activation of TLR4 and its downstream signaling pathways involving MyD88/IRAK/TRAF6 and PI3K/AKT and further suggest the possibility that TLR4-mediated target gene expression and cellular responses are also differentially modulated by saturated and unsaturated fatty acids.


Journal of Biological Chemistry | 2009

Fatty acids modulate toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner

Scott Wong; Myung-Ja Kwon; Augustine M. K. Choi; Hong-Pyo Kim; Kiichi Nakahira; Daniel H. Hwang

The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies demonstrated that saturated and polyunsaturated fatty acids reciprocally modulate the activation of TLR4. However, the underlying mechanism has not been understood. Here, we report for the first time that the saturated fatty acid lauric acid induced dimerization and recruitment of TLR4 into lipid rafts, however, dimerization was not observed in non-lipid raft fractions. Similarly, LPS and lauric acid enhanced the association of TLR4 with MD-2 and downstream adaptor molecules, TRIF and MyD88, into lipid rafts leading to the activation of downstream signaling pathways and target gene expression. However, docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, inhibited LPS- or lauric acid-induced dimerization and recruitment of TLR4 into lipid raft fractions. Together, these results demonstrate that lauric acid and DHA reciprocally modulate TLR4 activation by regulation of the dimerization and recruitment of TLR4 into lipid rafts. In addition, we showed that TLR4 recruitment to lipid rafts and dimerization were coupled events mediated at least in part by NADPH oxidase-dependent reactive oxygen species generation. These results provide a new insight in understanding the mechanism by which fatty acids differentially modulate TLR4-mediated signaling pathway and consequent inflammatory responses which are implicated in the development and progression of many chronic diseases.


Journal of Nutrition | 2009

Plasma Acylcarnitine Profiles Suggest Incomplete Long-Chain Fatty Acid β-Oxidation and Altered Tricarboxylic Acid Cycle Activity in Type 2 Diabetic African-American Women

Sean H. Adams; Charles L. Hoppel; Kerry H. Lok; Ling Zhao; Scott Wong; Paul E. Minkler; Daniel H. Hwang; John W. Newman; W. Timothy Garvey

Inefficient muscle long-chain fatty acid (LCFA) combustion is associated with insulin resistance, but molecular links between mitochondrial fat catabolism and insulin action remain controversial. We hypothesized that plasma acylcarnitine profiling would identify distinct metabolite patterns reflective of muscle fat catabolism when comparing individuals bearing a missense G304A uncoupling protein 3 (UCP3 g/a) polymorphism to controls, because UCP3 is predominantly expressed in skeletal muscle and g/a individuals have reduced whole-body fat oxidation. MS analyses of 42 carnitine moieties in plasma samples from fasting type 2 diabetics (n = 44) and nondiabetics (n = 12) with or without the UCP3 g/a polymorphism (n = 28/genotype: 22 diabetic, 6 nondiabetic/genotype) were conducted. Contrary to our hypothesis, genotype had a negligible impact on plasma metabolite patterns. However, a comparison of nondiabetics vs. type 2 diabetics revealed a striking increase in the concentrations of fatty acylcarnitines reflective of incomplete LCFA beta-oxidation in the latter (i.e. summed C10- to C14-carnitine concentrations were approximately 300% of controls; P = 0.004). Across all volunteers (n = 56), acetylcarnitine rose and propionylcarnitine decreased with increasing hemoglobin A1c (r = 0.544, P < 0.0001; and r = -0.308, P < 0.05, respectively) and with increasing total plasma acylcarnitine concentration. In proof-of-concept studies, we made the novel observation that C12-C14 acylcarnitines significantly stimulated nuclear factor kappa-B activity (up to 200% of controls) in RAW264.7 cells. These results are consistent with the working hypothesis that inefficient tissue LCFA beta-oxidation, due in part to a relatively low tricarboxylic acid cycle capacity, increases tissue accumulation of acetyl-CoA and generates chain-shortened acylcarnitine molecules that activate proinflammatory pathways implicated in insulin resistance.


Biochemical Pharmacology | 1997

Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide : Mediation through both mitogen-activated protein kinase and NF-κB signaling pathways in macrophages

Daniel H. Hwang; Byeong C. Jang; Gang Yu; Mary D. Boudreau

The mitogen-inducible cyclooxygenase (COX-2) is selectively expressed in lipopolysaccharide (LPS)-stimulated macrophages. However, the signaling pathways that lead to the expression of COX-2 in LPS-stimulated macrophages are not well understood. LPS activates members of mitogen-activated protein kinases (MAPKs) and NF-kappaB transcription factor in macrophages. We have shown that protein tyrosine kinase (PTK) inhibitors suppress the LPS-induced expression of COX-2 in macrophages (Chanmugam et al., J Biol Chem 270: 5418-5426, 1995). These PTK inhibitors also inhibit LPS-induced activation of MAPKs. Thus, in the present study, we determined whether the activation of MAPKs and NF-kappaB is necessary for the signaling pathway for the LPS-induced expression of COX-2 in the murine macrophage cell line RAW 264.7. The findings demonstrated that inhibition of extracellular signal-regulated protein kinases 1 and 2 (ERK-1 and -2) by the selective inhibitor PD98059 or inhibition of P38 by the specific inhibitor SB203580 results in partial suppression of COX-2 expression. However, activation of MAPKs by phorbol 12-myristate 13-acetate, H2O2, sorbitol, sodium vanadate, or a combination of these agents failed to induce the expression of COX-2. Inhibitors of NF-kappaB suppressed COX-2 expression without affecting tyrosine phosphorylation of MAPKs. The PTK inhibitors that suppressed the activation of MAPKs and COX-2 expression also inhibited the degradation of IkappaB-alpha. Together, these results indicate that the activation of NF-kappaB is required to induce the expression of COX-2 in LPS-stimulated RAW 264.7 cells. Inhibition of ERK-1 and 2 or P38 results in partial suppression of COX-2 expression. However, the activation of MAPKs alone is not sufficient to induce the expression of COX-2 in these cells.


Journal of Biological Chemistry | 2000

Murine TOLL-like Receptor 4 Confers Lipopolysaccharide Responsiveness as Determined by Activation of NFκB and Expression of the Inducible Cyclooxygenase

Sang H. Rhee; Daniel H. Hwang

Genetic evidence indicating that TOLL-like receptor 4 (Tlr4) is the lipopolysaccharide (LPS) receptor in mice was reported. However, biochemical evidence that murine Tlr4 confers LPS responsiveness has not been convincingly demonstrated. Inducible cyclooxygenase (COX-2) is selectively expressed in LPS-stimulated macrophages in part mediated through the activation of NFκB. Thus, we determined whether murine Tlr4 confers LPS responsiveness as evaluated by the activation of NFκB and COX-2 expression. Transfection of a murine macrophage-like cell line (RAW264.7) with the constitutively active form (ΔTlr4) of Tlr4 is sufficient to activate NFκB and COX-2 expression. However, the truncated form (ΔTlr4(P712H)) of the missense mutant Tlr4(P712H) found in LPS-hyporesponsive mouse strain (C3H/HeJ) inhibits LPS-induced NFκB activation and COX-2 expression. The inability of ΔTlr4(P712H) to activate NFκB and induce COX-2 expression is rescued by a constitutively active adapter protein myeloid differentiation factor 88 (MyD88), which interacts directly with the cytoplasmic domain of Tlr proteins. Furthermore, MyD88 is co-immunoprecipitated with the wild-type ΔTlr4 but not with the ΔTlr4(P712H) mutant. Together, these results indicate that Tlr4 confers LPS responsiveness in RAW264.7 cells and suggest that hyporesponsiveness of C3H/HeJ mice to LPS is attributed to the disruption of Tlr4-mediated signaling pathways that results from the inability of the mutant Tlr4(P712H) to interact with MyD88.


Journal of Immunology | 2005

Saturated and Polyunsaturated Fatty Acids Reciprocally Modulate Dendritic Cell Functions Mediated through TLR4

Amy R. Weatherill; Joo Young Lee; Ling Zhao; Danielle G. Lemay; Hyung S. Youn; Daniel H. Hwang

TLRs provide critical signals to induce innate immune responses in APCs such as dendritic cells (DCs) that in turn link to adaptive immune responses. Results from our previous studies demonstrated that saturated fatty acids activate TLRs, whereas n-3 polyunsaturated fatty acids inhibit agonist-induced TLR activation. These results raise a significant question as to whether fatty acids differentially modulate immune responses mediated through TLR activation. The results presented in this study demonstrate that the saturated fatty acid, lauric acid, up-regulates the expression of costimulatory molecules (CD40, CD80, and CD86), MHC class II, and cytokines (IL-12p70 and IL-6) in bone marrow-derived DCs. The dominant negative mutant of TLR4 or its downstream signaling components inhibits lauric acid-induced expression of a CD86 promoter-reporter gene. In contrast, an n-3 polyunsaturated fatty acid, docosahexaenoic acid, inhibits TLR4 agonist (LPS)-induced up-regulation of the costimulatory molecules, MHC class II, and cytokine production. Similarly, DCs treated with lauric acid show increased T cell activation capacity, whereas docosahexaenoic acid inhibits T cell activation induced by LPS-treated DCs. Together, our results demonstrate that the reciprocal modulation of both innate and adaptive immune responses by saturated fatty acid and n-3 polyunsaturated fatty acid is mediated at least in part through TLRs. These results imply that TLRs are involved in sterile inflammation and immune responses induced by nonmicrobial endogenous molecules. These results shed new light in understanding how types of dietary fatty acids differentially modulate immune responses that could alter the risk of many chronic diseases.


The FASEB Journal | 1989

Essential fatty acids and immune response.

Daniel H. Hwang

The implication that essential fatty acids (EFA) can affect immune response was based on the observation that EFA deficiency can accentuate or improve symptoms of certain autoimmune diseases in animals, and that supplementation of linoleic acid to animals reversed such effects. Furthermore, treatment of animals with cyclooxygenase inhibitors abrogated the effect of linoleic acid. Administration of cyclooxygenase inhibitors to animals enhanced both cell‐mediated and humoral immune responses. In vitro studies have shown that prostaglandin E (PGE) group inhibits both T and B lymphocyte functions; it is suggested that effects of EFA on immune response are, in part, mediated through eicosanoids. Growing evidence now suggests that the PGE group of prostaglandins can serve as a negative feedback modulator of immune response. However, in vitro effects of other cyclooxygenase‐derived products, such as PGI2 and thromboxane A2 (TXA2), have not been well established, perhaps because of their instability in aqueous media. Unlike the PGE group, some of lipoxygenase‐derived products of arachidonic acid have shown immunostimulatory effects, as assessed by lymphokine production in vitro. Whether such effects can be seen in vivo remains to be determined. Some lipoxygenase‐derived products with strong chemotatic action may indirectly influence immune response by modulating the population of antigen‐presenting macrophages in tissues. Thus, the net effect of eicosanoids synthesized in macrophages on modulating immune response may depend on relative amounts of cyclooxygenase‐derived products as compared with lipoxygenase‐derived products. Macrophages are the major source of eicosanoids among immunocompetent cells. The profile of eicosanoids, produced in vitro by macrophages, varies with type of stimuli and anatomical sites. It can also be affected by the fatty acid composition of tissue lipids, which in turn can be modified by the composition of dietary EFA. Whether manipulating dietary EFA can modulate immune response in normal humans and animals needs to be determined.— Hwang, D. Essential fatty acids and immune response. FASEB J. 3: 2052‐2061; 1989.


Journal of Immunology | 2005

Specific Inhibition of MyD88-Independent Signaling Pathways of TLR3 and TLR4 by Resveratrol: Molecular Targets Are TBK1 and RIP1 in TRIF Complex

Hyung S. Youn; Joo Young Lee; Katherine A. Fitzgerald; Howard A. Young; Shizuo Akira; Daniel H. Hwang

TLRs can activate two distinct branches of downstream signaling pathways. MyD88 and Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF) pathways lead to the expression of proinflammatory cytokines and type I IFN genes, respectively. Numerous reports have demonstrated that resveratrol, a phytoalexin with anti-inflammatory effects, inhibits NF-κB activation and other downstream signaling pathways leading to the suppression of target gene expression. However, the direct targets of resveratrol have not been identified. In this study, we attempted to identify the molecular target for resveratrol in TLR-mediated signaling pathways. Resveratrol suppressed NF-κB activation and cyclooxygenase-2 expression in RAW264.7 cells following TLR3 and TLR4 stimulation, but not TLR2 or TLR9. Further, resveratrol inhibited NF-κB activation induced by TRIF, but not by MyD88. The activation of IFN regulatory factor 3 and the expression of IFN-β induced by LPS, poly(I:C), or TRIF were also suppressed by resveratrol. The suppressive effect of resveratrol on LPS-induced NF-κB activation was abolished in TRIF-deficient mouse embryonic fibroblasts, whereas LPS-induced degradation of IκBα and expression of cyclooxygenase-2 and inducible NO synthase were still inhibited in MyD88-deficient macrophages. Furthermore, resveratrol inhibited the kinase activity of TANK-binding kinase 1 and the NF-κB activation induced by RIP1 in RAW264.7 cells. Together, these results demonstrate that resveratrol specifically inhibits TRIF signaling in the TLR3 and TLR4 pathway by targeting TANK-binding kinase 1 and RIP1 in TRIF complex. The results raise the possibility that certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression and can alter susceptibility to microbial infection and chronic inflammatory diseases.


The EMBO Journal | 2002

p53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis

Jeong A. Han; Jong Il Kim; Pat P. Ongusaha; Daniel H. Hwang; Leslie R. Ballou; Alka Mahale; Stuart A. Aaronson; Sam W. Lee

The identification of transcriptional targets of the tumor suppressor p53 is crucial in understanding mechanisms by which it affects cellular outcomes. Through expression array analysis, we identified cyclooxygenase 2 (Cox‐2), whose expression was inducible by wild‐type p53 and DNA damage. We also found that p53‐induced Cox‐2 expression results from p53‐mediated activation of the Ras/Raf/MAPK cascade, as demonstrated by suppression of Cox‐2 induction in response to p53 by dominant‐negative Ras or Raf1 mutants. Furthermore, heparin‐binding epidermal growth factor‐like growth factor (HB‐ EGF), a p53 downstream target gene, induced Cox‐2 expression, implying that Cox‐2 is an ultimate effector in the p53→HB‐EGF→Ras/Raf/MAPK→Cox‐2 pathway. p53‐induced apoptosis was enhanced greatly in Cox‐2 knock‐out cells as compared with wild‐type cells, suggesting that Cox‐2 has an abrogating effect on p53‐induced apoptosis. Also, a selective Cox‐2 inhibitor, NS‐398, significantly enhanced genotoxic stress‐induced apoptosis in several types of p53+/+ normal human cells, through a caspase‐dependent pathway. Together, these results demonstrate that Cox‐2 is induced by p53‐mediated activation of the Ras/Raf/ERK cascade, counteracting p53‐mediated apoptosis. This anti‐apoptosis effect may be a mechanism to abate cellular stresses associated with p53 induction.

Collaboration


Dive into the Daniel H. Hwang's collaboration.

Top Co-Authors

Avatar

Joo Young Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ling Zhao

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shurong Huang

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Hyung S. Youn

University of California

View shared research outputs
Top Co-Authors

Avatar

Ryan G. Snodgrass

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Joo Y. Lee

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Mary D. Boudreau

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Kikumi D. Ono-Moore

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Byeong C. Jang

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge