Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel H. Moralejo is active.

Publication


Featured researches published by Daniel H. Moralejo.


Endocrinology | 2010

A new oxytocin-saporin cytotoxin for lesioning oxytocin-receptive neurons in the rat hindbrain.

Denis G. Baskin; Francis Kim; Richard W. Gelling; Brian J. Russell; Michael W. Schwartz; Gregory J. Morton; Hyagriv N. Simhan; Daniel H. Moralejo; James E. Blevins

Evidence suggests that release of oxytocin in the nucleus tractus solitarius (NTS) of the hindbrain from descending projections that originate in the paraventricular nucleus can inhibit food intake by amplifying the satiety response to cholecystokinin (CCK). To further evaluate this mechanism in rats, we used a novel cytotoxin, saporin conjugated to oxytocin (OXY-SAP), a compound designed to destroy cells that express oxytocin receptors (OXYr). OXY-SAP was injected directly into the NTS to lesion neurons that express OXYr and that are implicated in potentiating CCKs satiety effects. The control consisted of injection of saporin conjugated to a nonsense peptide. We found that OXY-SAP was cytotoxic to human uterine smooth muscle cells in vitro, demonstrating that OXY-SAP can lesion cells that express OXYr. Using laser capture microdissection and real-time quantitative PCR, we demonstrated that OXYr mRNA levels were reduced in the NTS after OXY-SAP administration. Moreover, we found that OXY-SAP attenuated the efficacy of CCK-8 to reduce food intake and blocked the actions of an OXYr antagonist to stimulate food intake. The findings suggest that OXY-SAP is an effective neurotoxin for in vivo elimination of cells that express OXYr and is potentially useful for studies to analyze central nervous system mechanisms that involve the action of oxytocin on food intake and other physiological processes.


Mammalian Genome | 1999

Mapping and characterization of quantitative trait loci for non-insulin-dependent diabetes mellitus with an improved genetic map in the Otsuka Long-Evans Tokushima Fatty rat

Suwen Wei; Kaichun Wei; Daniel H. Moralejo; Tomoe Ogino; George Koike; Howard J. Jacob; Kenkichi Sugiura; Yoshiyuki Sasaki; Takahisa Yamada; Kozo Matsumoto

Abstract. The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an animal model for obese-type, non-insulin-dependent diabetes mellitus (NIDDM) in humans. We have previously reported four quantitative trait loci (QTLs) responsible for NIDDM on Chromosomes (Chrs) 7, 14, 8, and 11 (Nidd1–4/of for Non-insulin-dependent diabetes1–4/oletf) by a whole-genome search in 160 F2 progenies obtained by mating the OLETF and the Fischer-344 (F344) rats. Our present investigation was designed to identify and characterize novel QTLs affecting NIDDM by performing a genome-wide linkage analysis of genes for glucose levels and body weight and analysis for gene-to-gene and gene-to-body-weight interactions on an improved genetic map with a set of 382 informative markers in the 160 F2 progenies. We have identified seven novel QTLs on rat Chrs 1 (Nidd5 and 6/of), 5 (Nidd7/of), 9 (Nidd8/of), 12 (Nidd9/of), 14 (Nidd10/of) and 16 (Nidd11/of) which, together with the Nidd1–4/of, account for a total of ∼60% and ∼75% of the genetic variance of the fasting and postprandial glucose levels, respectively, in the F2. While the OLETF allele corresponds with increased glucose levels as expected for the novel QTLs except Nidd8 and 9/of, the Nidd8 and 9/of exhibit heterosis: heterozygotes showing significantly higher glucose levels than OLETF or F344 homozygotes. There are epistatic interactions between Nidd1 and 10/of and between Nidd2 and 8/of. Additionally, our results indicated that the Nidd6 and 11/of could also contribute to an increase of body weight, and that the other five QTLs could show no linkage with body weight, but Nidd8,9, and 10/of have an interaction with body weight.


Journal of Autoimmunity | 2003

Genetic dissection of lymphopenia from autoimmunity by introgression of mutated Ian5 gene onto the F344 rat

Daniel H. Moralejo; Hyunhee A. Park; Sara J. Speros; Armand J. MacMurray; Anne E. Kwitek; Howard J. Jacob; Eric S. Lander; Åke Lernmark

Abstract Peripheral T cell lymphopenia (lyp) in the BioBreeding (BB) rat is linked to a frameshift mutation in Ian5, a member of the Immune Associated Nucleotide (Ian) gene family on rat chromosome 4. This lymphopenia leads to type 1 (insulin-dependent) diabetes mellitus (T1DM) at rates up to 100% when combined with the BB rat MHC RT1 u/u genotype. In order, to better study the lymphopenia phenotype without possible confounding effects of diabetes or other autoimmune disease, we generated congenic F344.lyp rats by introgression of lyp on diabetes-resistant MHC RT1 lv1/lv1 F344 rats. Analysis of thymic CD4 and CD8 T lymphocytes revealed no difference in the percentage of CD4−CD8+and CD4+CD8−subsets in lyp/lyp compared to +/+ F344 rats. The same subsets was however dramatically reduced in blood (P=0.005), spleen (P=0.019) and mesenteric lymph nodes (MLN) (P<0.0001). Compared to F344 +/+ rats double positive CD4+CD8+T cells were increased only in lyp/lyp spleen (P=0.034) while double negative CD4−CD8−were increased in thymus (P=0.033), spleen (P=0.012), MLN (P<0.0001), and peripheral blood (P<0.0001). There were no signs of inflammatory lesions in organs and tissues in F344.lyp/lyp rats examined at 120 days of age or older. We thus conclude that the lymphopenia phenotype was reconstituted by introgression of lyp on to F344 rats without subsequent development of organ-specific autoimmunity. The congenic F344.lyp rat should prove useful to dissect the mechanisms by which the Ian5 frameshift mutation affects T cell selection, differentiation and maturation without organ-specific autoimmunity.


Mammalian Genome | 1999

Identification of novel non-insulin-dependent diabetes mellitus susceptibility loci in the Otsuka Long-Evans Tokushima Fatty rat by MQM-mapping method

Kenkichi Sugiura; Takeshi Miyake; Yukio Taniguchi; Takahisa Yamada; Daniel H. Moralejo; Suwen Wei; Kaichun Wei; Yoshiyuki Sasaki; Kozo Matsumoto

Abstract. The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an animal model for obese-type, non-insulin-dependent diabetes mellitus (NIDDM) in humans. We have previously identified 11 quantitative trait loci (QTLs) responsible for NIDDM susceptibility on Chromosomes (Chrs) 1, 5, 7, 8, 9, 11, 12, 14, and 16 (Nidd1–11/of for Non-insulin-dependent diabetes1–11/oletf) by using the interval mapping method in 160 F2 progenies obtained by mating the OLETF and the Fischer-344 (F344) rats. MQM-mapping, which was applied for QTL analysis based on multiple-QTL models, is reported to be more powerful than interval mapping, because in the process of mapping one QTL the genetic background, which contains the other QTLs, is controlled. Application of MQM-mapping in the F2 intercrosses has led to a revelation of three novel QTLs on rat Chrs 5 (Nidd12/of), 7 (Nidd13/of), and 17 (Nidd14/of), in addition to Nidd1–11/of loci. The three QTLs, together with the Nidd1–11/of, account for a total of ∼70% and ∼85% of the genetic variance of the fasting and postprandial glucose levels, respectively, in the F2. While the OLETF allele corresponds with increased glucose levels as expected for Nidd12 and 14/of, the Nidd13/of exhibits heterosis: heterozygotes showing significantly higher glucose levels than OLETF or F344 homozygotes. There is epistatic interaction between Nidd2 and 14/of. Additionally, our results indicated that the novel QTLs could show no linkage with body weight, but Nidd12/of has an interaction with body weight.


Mammalian Genome | 2002

Examination of OLETF-derived non-insulin-dependent diabetes mellitus QTL by construction of a series of congenic rats

Hiroyuki Kose; Daniel H. Moralejo; Tomoe Ogino; Akira Mizuno; Takahisa Yamada; Kozo Matsumoto

The Otuska Long-Evans Tokushima Fatty (OLETF) rat is one of the well-characterized animal models for the study of type 2 diabetes. Our previous QTL mapping identified 11 loci responsible for non-insulin-dependent diabetes mellitus (NIDDM) susceptibility in the OLETF rat. Here we generated a series of congenic animals by individually introgressing all 11 OLETF-derived NIDDM loci into a normoglycemic F344 background. Subsequent oral glucose tolerance test revealed that the congenic strains for Nidd1/of, Nidd2/of, Nidd3/of Nidd4/of, Nidd7/of, and Nidd10/of showed significantly higher levels of blood glucose in comparison with parental host strain F344. Furthermore, simultaneously made heterozygote animals for Nidd1/of and Nidd2/of did not increase blood glucose levels, indicating that these loci are recessively inherited as predicted by the QTL analysis. Congenic strains for the other five loci—Nidd5/of, Nidd6/of, Nidd8/of, Nidd9/of, and Nidd11/of—were apparently normoglycemic, presumably owing to heterosis or because the effect of these loci may not be detected unless interactions with other OLETF genes exist. We believe that these congenic strains should provide useful agents for decomposing complex diabetic traits and for positional cloning.


Mammalian Genome | 1998

A major quantitative trait locus co-localizing with cholecystokinin type A receptor gene influences poor pancreatic proliferation in a spontaneously diabetogenic rat

Daniel H. Moralejo; Tomoe Ogino; Min Zhu; Kiyotaka Toide; Suwen Wei; Kaichun Wei; Takahisa Yamada; Akira Mizuno; Kozo Matsumoto; Kenji Shima

Abstract. The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an animal model for obese-type, non-insulin-dependent diabetes mellitus (NIDDM) in humans. The OLETF rat has poor capacity for pancreatic proliferation, which may be the critical pathogenetic event in NIDDM development. Our investigation was designed to identify quantitative trait loci (QTLs) responsible for poor pancreatic proliferation by examining compensatory proliferation of the pancreatic remnant after partial pancreatectomy and performing a genome-wide scan in an F2 intercross obtained by mating the OLETF and the Fischer-344 (F344) rats. We identified a highly significant QTL on rat Chromosome 14 with a maximum lod score of 16.7, which accounts for 55% of the total variance. The QTL co-localizes with the gene encoding cholecystokinin type A receptor (CCKAR) which is likely to mediate the trophic effect of cholecystokinin on pancreas and is defective in the OLETF rat.


Diabetes | 2006

Introgression of F344 rat genomic DNA on BB rat chromosome 4 generates diabetes-resistant lymphopenic BB rats

Jessica M. Fuller; Anne E. Kwitek; Tyson Hawkins; Daniel H. Moralejo; Wen Lu; Terry Tupling; Armand J. MacMurray; Gretta Borchardt; Michael Hasinoff; Åke Lernmark

Failure to express the Gimap5 protein is associated with lymphopenia (lyp) and linked to spontaneous diabetes in the diabetes-prone BioBreeding (BBDP) rat. Gimap5 is a member of seven related genes located within 150 Kb on rat chromosome 4. Congenic DR.lyp/lyp rats, where BBDP lyp was introgressed onto the diabetes-resistant BBDR background (BBDR.BBDP.lyp/lyp), all develop diabetes between 46 and 81 days of age (mean ± SE, 61 ± 1), whereas DR.lyp/+ and DR.+/+ rats are nonlymphopenic and diabetes resistant. In an intercross between F1(BBDP x F344) rats, we identified a rat with a recombination event on chromosome 4, allowing us to fix 33 Mb of F344 between D4Rat253 and D4Rhw6 in the congenic DR.lyp rat line. Gimap1 and Gimap5 were the only members of the Gimap family remaining homozygous for the BBDP allele. Offspring homozygous for the F344 allele (f/f) between D4Rat253 and D4Rhw6 were lymphopenic (85 of 85, 100%) but did not develop diabetes (0 of 85). During rescue of the recombination, 102 of 163 (63%) rats heterozygous (b/f) for the recombination developed diabetes between 52 and 222 days of age (88 ± 3). Our data demonstrate that introgression of a 33-Mb region of the F344 genome, proximal to the mutated Gimap5 gene, renders the rat diabetes resistant despite being lymphopenic. Spontaneous diabetes in the BB rat may therefore be controlled, in part, by a diabetogenic factor(s), perhaps unrelated to the Gimap5 mutation on rat chromosome 4.


Mammalian Genome | 1998

AN INTEGRATED GENETIC MAP OF THE RAT WITH 562 MARKERS FROM DIFFERENT SOURCES

Suwen Wei; Kaichun Wei; Daniel H. Moralejo; Takahisa Yamada; Keisuke Izumi; Kozo Matsumoto

Abstract. Genetic maps are the primary resources for genetic study. Genetic map construction was quite difficult in the past decade for lack of polymorphic markers. This situation has been changed since the development of microsatellite markers or simple sequence length polymorphisms (SSLPs) because they are abundant and more polymorphic. Here we report the construction of an integrated genetic map of the rat derived from two F2 intercrosses. A map of 376 markers from 160 (OLETF × F344)F2 progenies and a map of 333 markers from 71 (F344 × LEC)F2 animals are integrated by use of common set of 120 anchor markers chosen to be spaced at an average of 15 cM in the genome. The resulting integrated map with 194 newly developed rat markers from WIBR/MIT CGR, 269 Mit/Mgh markers, 94 Wox markers, and 5 markers of various origins covers the majority of 21 chromosomes of the rat with a total genetic distance of 1797 cM and an average marker spacing of 3.2 cM. The current map provides detailed information for markers from different sources and, therefore, should be helpful to the research community.


Mammalian Genome | 2003

Serum leptin concentration is linked to chromosomes 2 and 6 in the OLETF rat, an animal model of type 2 diabetes with mild obesity.

Tomoe Ogino; Daniel H. Moralejo; Hiroyuki Kose; Takahisa Yamada; Kozo Matsumoto

Leptin is produced by adipose tissue and acts as a feedback signal to the hypothalamus controlling energy homeostasis, by reducing food consumption and increasing energy expenditure. Because serum leptin levels are highly correlated with body fat mass, they can be used as an index to predict obesity-related diseases. However, the identity of genetic factors that influence the obesity and the obesity-related metabolic disorders remains largely unknown. In this study, we performed a whole-genome scan search, using 382 F2 intercross progeny between the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, an animal model for obese type 2 diabetes in human, and F344 rat, in order to identify loci responsible for the regulation of leptin and other obesity-related plasma substances. We have identified two quantitative trait loci (QTLs) contributing to serum leptin levels. These two loci, designated Olep1 [Chromosome (Chr) 2] and Olep2 (Chr 6), were homologous to those of human genome regions containing several potential candidate genes for obesity. These are fatty acid-binding protein 2 (FABP2), FABP4, and FABP5 for Olep1, and proopiomelanocortin (POMC) and glucose regulatory protein (GCKR) for Olep2.


Brain Research | 2009

Normal feeding and body weight in Fischer 344 rats lacking the cholecystokinin-1 receptor gene

J. E. Blevins; Joost Overduin; Jessica M. Fuller; David E. Cummings; Kozo Matsumoto; Daniel H. Moralejo

A large body of evidence has demonstrated that one mechanism by which cholecystokinin (CCK) inhibits food intake through activation of CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. OLETF rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic, obese, and predisposed to type 2 diabetes. Recently, by introgressing the OLETF-derived, CCK1R-null gene onto a Fischer 344 genetic background, we have been able to generate a CCK1R-deficient, congenic rat strain, F344.Cck1r(-/-), that in contrast to OLETF rats, possesses a lean and normoglycemic phenotype. In the present study, the behavioral and neurobiological phenotype of this rat strain was characterized more fully. As expected, intraperitoneal injections of CCK-8 inhibited intake of chow and Ensure Plus and induced Fos responses in the area postrema and the gelatinosus, commissural and medial subdivisions of the nucleus tractus solitarius of wild-type F344.Cck1r(+/+) rats, whereas CCK-8 was without effect on food intake or Fos induction in the F344.Cck1r(-/-) rats. F344.Cck1r(-/-) and F344.Cck1r(+/+) rats did not differ in body weight and showed comparable weight gain when maintained on Ensure Plus for 2 weeks. Also, no difference was found in 24-h food intake, and dark-phase meal frequency or meal size between F344.Cck1r(+/+) and F344.Cck1r(-/-) rats. As expected, blockade of endogenous CCK action at CCK1R increased food intake and blocked the effects of peripheral CCK-8 in wild-type F344.Cck1r(+/+) rats. These results confirm that in rats with a F344 background, CCK-1R mediates CCK-8-induced inhibition of food intake and Fos activation in the hindbrain and demonstrate that selective genetic ablation of CCK1R is not associated with altered meal patterns, hyperphagia, or excessive weight gain on a palatable diet.

Collaboration


Dive into the Daniel H. Moralejo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suwen Wei

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Kaichun Wei

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoe Ogino

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge