Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica M. Fuller is active.

Publication


Featured researches published by Jessica M. Fuller.


Journal of Immunology | 2004

Involvement of Eotaxin, Eosinophils, and Pancreatic Predisposition in Development of Type 1 Diabetes Mellitus in the BioBreeding Rat

Martin J. Hessner; Xujing Wang; Lisa Meyer; Rhonda Geoffrey; Shuang Jia; Jessica M. Fuller; Åke Lernmark; Soumitra Ghosh

Allergy and autoimmunity are both examples of deregulated immunity characterized by inflammation and injury of targeted tissues that have until recently been considered disparate disease processes. However, recent findings have implicated mast cells, in coordination with granulocytes and other immune effector cells, in the pathology of these two disorders. The BioBreeding (BB) DRlyp/lyp rat develops an autoimmune insulin-dependent diabetes similar to human type 1 diabetes mellitus (T1DM), whereas the BBDR+/+ rat does not. To better understand immune processes during development of T1DM, gene expression profiling at day (d) 40 (before insulitis) and d65 (before disease onset) was conducted on pancreatic lymph nodes of DRlyp/lyp, DR+/+, and Wistar-Furth (WF) rats. The eosinophil-recruiting chemokine, eotaxin, and the high-affinity IgE receptor (FcεRI) were up-regulated >5-fold in d65 DRlyp/lyp vs d65 DR+/+ pancreatic lymph nodes by microarray (p < 0.05) and quantitative RT-PCR studies (p < 0.05). DR+/+, WF, and d40 DRlyp/lyp animals possessed normal pancreatic histology; however, d65 DRlyp/lyp animals possessed eosinophilic insulitis. Therefore, immunohistochemistry for pancreatic eotaxin expression was conducted, revealing positive staining of d65 DRlyp/lyp islets. Islets of d65 DR+/+ rats also stained positively, consistent with underlying diabetic predisposition in the BB lineage, whereas WF islets did not. Other differentially expressed transcripts included those associated with eosinophils, mast cells, and lymphocytes. These data support an important role for these inflammatory mediators in BB rat T1DM and suggest that the lymphopenia due to the Ian5/(lyp) mutation may result in a deregulation of cells involved in insulitis and β cell destruction.


Journal of Cellular and Molecular Medicine | 2008

Treatment of diabetic rats with encapsulated islets

Ian R. Sweet; Ofer Yanay; Lanaya Waldron; Merle L. Gilbert; Jessica M. Fuller; Terry Tupling; Åke Lernmark; William R. A. Osborne

Immunoprotection of islets using bioisolator systems permits introduction of allogeneic cells to diabetic patients without the need for immunosuppression. Using TheraCyte™ immunoisolation devices, we investigated two rat models of type 1 diabetes mellitus (T1DM), BB rats and rats made diabetic by streptozotocin (STZ) treatment. We chose to implant islets after the onset of diabetes to mimic the probable treatment of children with T1DM as they are usually diagnosed after disease onset. We encapsulated 1000 rat islets and implanted them subcutaneously (SQ) into diabetic biobreeding (BB) rats and STZ‐induced diabetic rats, defined as two or more consecutive days of blood glucose >350 mg/dl. Rats were monitored for weight and blood glucose. Untreated BB rats rapidly lost weight and were euthanized at >20% weight loss that occurred between 4 and 10 days from implantation. For period of 30–40 days following islet implantation weights of treated rats remained steady or increased. Rapid weight loss occurred after surgical removal of devices that contained insulin positive islets. STZ‐treated rats that received encapsulated islets showed steady weight gain for up to 130 days, whereas untreated control rats showed steady weight loss that achieved >20% at around 55 days. Although islet implants did not normalize blood glucose, treated rats were apparently healthy and groomed normally. Autologous or allogeneic islets were equally effective in providing treatment. TheraCyte™ devices can sustain islets, protect allogeneic cells from immune attack and provide treatment for diabetic‐mediated weight loss in both BB rats and STZ‐induced diabetic rats.


Diabetes | 2006

Introgression of F344 rat genomic DNA on BB rat chromosome 4 generates diabetes-resistant lymphopenic BB rats

Jessica M. Fuller; Anne E. Kwitek; Tyson Hawkins; Daniel H. Moralejo; Wen Lu; Terry Tupling; Armand J. MacMurray; Gretta Borchardt; Michael Hasinoff; Åke Lernmark

Failure to express the Gimap5 protein is associated with lymphopenia (lyp) and linked to spontaneous diabetes in the diabetes-prone BioBreeding (BBDP) rat. Gimap5 is a member of seven related genes located within 150 Kb on rat chromosome 4. Congenic DR.lyp/lyp rats, where BBDP lyp was introgressed onto the diabetes-resistant BBDR background (BBDR.BBDP.lyp/lyp), all develop diabetes between 46 and 81 days of age (mean ± SE, 61 ± 1), whereas DR.lyp/+ and DR.+/+ rats are nonlymphopenic and diabetes resistant. In an intercross between F1(BBDP x F344) rats, we identified a rat with a recombination event on chromosome 4, allowing us to fix 33 Mb of F344 between D4Rat253 and D4Rhw6 in the congenic DR.lyp rat line. Gimap1 and Gimap5 were the only members of the Gimap family remaining homozygous for the BBDP allele. Offspring homozygous for the F344 allele (f/f) between D4Rat253 and D4Rhw6 were lymphopenic (85 of 85, 100%) but did not develop diabetes (0 of 85). During rescue of the recombination, 102 of 163 (63%) rats heterozygous (b/f) for the recombination developed diabetes between 52 and 222 days of age (88 ± 3). Our data demonstrate that introgression of a 33-Mb region of the F344 genome, proximal to the mutated Gimap5 gene, renders the rat diabetes resistant despite being lymphopenic. Spontaneous diabetes in the BB rat may therefore be controlled, in part, by a diabetogenic factor(s), perhaps unrelated to the Gimap5 mutation on rat chromosome 4.


Physiological Genomics | 2009

Genetic dissection reveals diabetes loci proximal to the gimap5 lymphopenia gene

Jessica M. Fuller; Marika Bogdani; Terry Tupling; Richard Jensen; Ranae Pefley; Sahar Manavi; Laura Cort; Elizabeth P. Blankenhorn; John P. Mordes; Åke Lernmark; Anne E. Kwitek

Congenic DRF.(f/f) rats are protected from type 1 diabetes (T1D) by 34 Mb of F344 DNA introgressed proximal to the gimap5 lymphopenia gene. To dissect the genetic factor(s) that confer protection from T1D in the DRF.(f/f) rat line, DRF.(f/f) rats were crossed to inbred BBDR or DR.(lyp/lyp) rats to generate congenic sublines that were genotyped and monitored for T1D, and positional candidate genes were sequenced. All (100%) DR.(lyp/lyp) rats developed T1D by 83 days of age. Reduction of the DRF.(f/f) F344 DNA fragment by 26 Mb (42.52-68.51 Mb) retained complete T1D protection. Further dissection revealed that a 2 Mb interval of F344 DNA (67.41-70.17 Mb) (region 1) resulted in 47% protection and significantly delayed onset (P < 0.001 compared with DR.(lyp/lyp)). Retaining <1 Mb of F344 DNA at the distal end (76.49-76.83 Mb) (region 2) resulted in 28% protection and also delayed onset (P < 0.001 compared with DR.(lyp/lyp)). Comparative analysis of diabetes frequency in the DRF.(f/f) congenic sublines further refined the RNO4 region 1 interval to approximately 670 kb and region 2 to the 340 kb proximal to gimap5. All congenic DRF.(f/f) sublines were prone to low-grade pancreatic mononuclear cell infiltration around ducts and vessels, but <20% of islets in nondiabetic rats showed islet infiltration. Coding sequence analysis revealed TCR Vbeta 8E, 12, and 13 as candidate genes in region 1 and znf467 and atp6v0e2 as candidate genes in region 2. Our results show that spontaneous T1D is controlled by at least two genetic loci 7 Mb apart on rat chromosome 4.


Brain Research | 2009

Normal feeding and body weight in Fischer 344 rats lacking the cholecystokinin-1 receptor gene

J. E. Blevins; Joost Overduin; Jessica M. Fuller; David E. Cummings; Kozo Matsumoto; Daniel H. Moralejo

A large body of evidence has demonstrated that one mechanism by which cholecystokinin (CCK) inhibits food intake through activation of CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. OLETF rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic, obese, and predisposed to type 2 diabetes. Recently, by introgressing the OLETF-derived, CCK1R-null gene onto a Fischer 344 genetic background, we have been able to generate a CCK1R-deficient, congenic rat strain, F344.Cck1r(-/-), that in contrast to OLETF rats, possesses a lean and normoglycemic phenotype. In the present study, the behavioral and neurobiological phenotype of this rat strain was characterized more fully. As expected, intraperitoneal injections of CCK-8 inhibited intake of chow and Ensure Plus and induced Fos responses in the area postrema and the gelatinosus, commissural and medial subdivisions of the nucleus tractus solitarius of wild-type F344.Cck1r(+/+) rats, whereas CCK-8 was without effect on food intake or Fos induction in the F344.Cck1r(-/-) rats. F344.Cck1r(-/-) and F344.Cck1r(+/+) rats did not differ in body weight and showed comparable weight gain when maintained on Ensure Plus for 2 weeks. Also, no difference was found in 24-h food intake, and dark-phase meal frequency or meal size between F344.Cck1r(+/+) and F344.Cck1r(-/-) rats. As expected, blockade of endogenous CCK action at CCK1R increased food intake and blocked the effects of peripheral CCK-8 in wild-type F344.Cck1r(+/+) rats. These results confirm that in rats with a F344 background, CCK-1R mediates CCK-8-induced inhibition of food intake and Fos activation in the hindbrain and demonstrate that selective genetic ablation of CCK1R is not associated with altered meal patterns, hyperphagia, or excessive weight gain on a palatable diet.


Journal of Endocrinology | 2013

Biobreeding rat islets exhibit reduced antioxidative defense and N-acetyl cysteine treatment delays type 1 diabetes

Marika Bogdani; Angela M. Henschel; Sanjay Kansra; Jessica M. Fuller; Rhonda Geoffrey; Shuang Jia; Mary L. Kaldunski; Scott Pavletich; Simon Prosser; Yi-Guang Chen; Åke Lernmark; Martin J. Hessner

Islet-level oxidative stress has been proposed as a trigger for type 1 diabetes (T1D), and release of cytokines by infiltrating immune cells further elevates reactive oxygen species (ROS), exacerbating β cell duress. To identify genes/mechanisms involved with diabetogenesis at the β cell level, gene expression profiling and targeted follow-up studies were used to investigate islet activity in the biobreeding (BB) rat. Forty-day-old spontaneously diabetic lymphopenic BB DRlyp/lyp rats (before T cell insulitis) as well as nondiabetic BB DR+/+ rats, nondiabetic but lymphopenic F344lyp/lyp rats, and healthy Fischer (F344) rats were examined. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (Gstm2, Gstm4, Gstm7, Gstt1, Gstp1, and Gstk1), superoxide dismutases (Sod2 and Sod3), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Systemic administration of the antioxidant N-acetyl cysteine to DRlyp/lyp rats altered abundances of peripheral eosinophils, reduced severity of insulitis, and significantly delayed but did not prevent diabetes onset. We find evidence of β cell dysfunction in BB rats independent of T1D progression, which includes lower expression of genes related to antioxidative defense mechanisms during the pre-onset period that may contribute to overall T1D susceptibility.


Journal of Leukocyte Biology | 2007

Low-density cells isolated from the rat thymus resemble branched cortical macrophages and have a reduced capability of rescuing double-positive thymocytes from apoptosis in the BB-DP rat.

Vinod Sommandas; Elizabeth A. Rutledge; Brian Van Yserloo; Jessica M. Fuller; Åke Lernmark; Hemmo A. Drexhage

Biobreeding‐diabetes prone (BB‐DP) rats spontaneously develop organ‐specific autoimmunity and are severely lymphopenic and particularly deficient in ART2+ regulatory T cells. A special breed, the so‐called BB‐diabetic‐resistant (DR) rats, are not lymphopenic and do not develop organ‐specific autoimmunity. The genetic difference between both strains is the lymphopenia (lyp) gene. Intrathymic tolerance mechanisms are important to prevent autoimmunity, and next to thymus epithelial cells, thymus APC play a prominent part in this tolerance. We here embarked on a study to detect defects in thymus APC of the BB‐DP rat and isolated thymus APC using a protocol based on the low‐density and nonadherent character of the cells. We used BB‐DP, BB‐DR, wild‐type F344, and F344 rats congenic for the lyp gene‐containing region. The isolated thymus, nonadherent, low‐density cells appeared to be predominantly ED2+ branched cortical macrophages and not OX62+ thymus medullary and cortico‐medullary dendritic cells. Functionally, these ED2+ macrophages were excellent stimulators of T cell proliferation, but it is more important that they rescued double‐positive thymocytes from apoptosis. The isolated thymus ED2+ macrophages of the BB‐DP and the F344.lyp/lyp rat exhibited a reduced T cell stimulatory capacity as compared with such cells of nonlymphopenic rats. They had a strongly diminished capability of rescuing thymocytes from apoptosis (also of ART2+ T cells) and showed a reduced Ian5 expression (as lyp/lyp thymocytes do). Our experiments strongly suggest that branched cortical macrophages play a role in positive selection of T cells in the thymus and point to defects in these cells in BB‐DP rats.


Physiological Genomics | 2010

Differential effects of leptin receptor mutation on male and female BBDR.Gimap5−/Gimap5− spontaneously diabetic rats

Daniel H. Moralejo; Carl T. Hansen; Piper M. Treuting; Martin J. Hessner; Jessica M. Fuller; Brian Van Yserloo; Richard Jensen; William R. A. Osborne; Anne E. Kwitek; Åke Lernmark

Rodents homozygous for autosomal leptin receptor gene mutations not only become obese, insulin resistant, and hyperleptinemic but also develop a dysregulated immune system. Using marker-assisted breeding to introgress the Koletsky rat leptin receptor mutant (lepr-/lepr-), we developed a novel congenic BBDR.(lepr-/lepr-) rat line to study the development of obesity and type 2 diabetes (T2D) in the BioBreeding (BB) diabetes-resistant (DR) rat. While heterozygous lepr (-/+) or homozygous (+/+) BBDR rats remained lean and metabolically normal, at 3 wk of age all BBDR.(lepr-/lepr-) rats were obese without hyperglycemia. Between 45 and 70 days of age, male but not female obese rats developed T2D. We had previously developed congenic BBDR.(Gimap5-/Gimap5-) rats, which carry an autosomal frameshift mutation in the Gimap5 gene linked to lymphopenia and spontaneous development of type 1 diabetes (T1D) without sex differences. Because the autoimmune-mediated destruction of pancreatic islet beta-cells may be affected not only by obesity but also by the absence of leptin receptor signaling, we next generated BBDR.(lepr-/lepr-,Gimap5-/Gimap5-) double congenic rats carrying the mutation for Gimap5 and T1D as well as the Lepr mutation for obesity and T2D. The hyperleptinemia rescued end-stage islets in BBDR.(lepr-/lepr-,Gimap5-/Gimap5-) congenic rats and induced an increase in islet size in both sexes, while T1D development was delayed and reduced only in females. These results demonstrate that obesity and T2D induced by introgression of the Koletsky leptin receptor mutation in the BBDR rat result in islet expansion associated with protection from T1D in female but not male BBDR.(lepr-/lepr-,Gimap5-/Gimap5-) congenic rats. BBDR.(lepr-/lepr-,Gimap5-/Gimap5-) congenic rats should prove valuable to study interactions between lack of leptin receptor signaling, obesity, and sex-specific T2D and T1D.


Experimental Diabetes Research | 2009

Sequence Variation and Expression of the Gimap Gene Family in the BB Rat

Elizabeth A. Rutledge; Jessica M. Fuller; Brian Van Yserloo; Daniel H. Moralejo; Ruth A. Ettinger; Prashant Gaur; Jana L. Hoehna; Morgan R. Peterson; Richard Jensen; Anne E. Kwitek; Åke Lernmark

Positional cloning of lymphopenia (lyp) in the BB rat revealed a frameshift mutation in Gimap5, a member of at least seven related GTPase Immune Associated Protein genes located on rat chromosome 4q24. Our aim was to clone and sequence the cDNA of the BB diabetes prone (DP) and diabetes resistant (DR) alleles of all seven Gimap genes in the congenic DR.lyp rat line with 2 Mb of BB DP DNA introgressed onto the DR genetic background. All (100%) DR.lyp/lyp rats are lymphopenic and develop type 1 diabetes (T1D) by 84 days of age while DR.+/+ rats remain T1D and lyp resistant. Among the seven Gimap genes, the Gimap5 frameshift mutation, a mutant allele that produces no protein, had the greatest impact on lymphopenia in the DR.lyp/lyp rat. Gimap4 and Gimap1 each had one amino acid substitution of unlikely significance for lymphopenia. Quantitative RT-PCR analysis showed a reduction in expression of all seven Gimap genes in DR.lyp/lyp spleen and mesenteric lymph nodes when compared to DR.+/+. Only four; Gimap1, Gimap4, Gimap5, and Gimap9 were reduced in thymus. Our data substantiates the Gimap5 frameshift mutation as the primary defect with only limited contributions to lymphopenia from the remaining Gimap genes.


Life Sciences | 2011

BB rat Gimap gene expression in sorted lymphoid T and B cells

Daniel H. Moralejo; Jessica M. Fuller; Elizabeth A. Rutledge; Brian Van Yserloo; Ruth A. Ettinger; Richard Jensen; William R. A. Osborne; Anne E. Kwitek; Åke Lernmark

AIMS The Gimap gene family has been shown to be integral to T cell survival and development. A frameshift mutation in Gimap5, one of seven members of the Gimap family, results in lymphopenia and is a prerequisite for spontaneous type 1 diabetes (T1D) in the BioBreeding (BB) rat. While not contributing to lymphopenia, the Gimap family members proximal to Gimap5, encompassed within the Iddm39 quantitative trait locus (QTL), have been implicated in T1D. We hypothesized that expression of the Gimap family members within the Iddm39 QTL, during thymocyte development as well as in peripheral T and B cells contribute to T1D. MAIN METHODS Cell sorted subpopulations were analyzed by quantitative real time (qRT) PCR. KEY FINDINGS Gimap4 expression was reduced in DR.(lyp/lyp) rat double negative, double positive and CD8 single positive (SP) thymocytes while expression of Gimap8, Gimap6, and Gimap7 was reduced only in CD8 SP thymocytes. Interestingly, expression of the entire Gimap gene family was reduced in DR.(lyp/lyp) rat peripheral T cells compared to non-lymphopenic, non-diabetic DR.(+/+) rats. With the exception of Gimap6, the Gimap family genes were not expressed in B cells from spleen and mesenteric lymph node (MLN). Expression of Gimap9 was only detected in hematopoietic cells of non B cell lineage such as macrophage, dendritic or NK cells. SIGNIFICANCE These results suggest that lack of the Gimap5 protein in the DR.(lyp/lyp) congenic rat was associated with impaired expression of the entire family of Gimap genes and may regulate T cell homeostasis in the peripheral lymphoid organs.

Collaboration


Dive into the Jessica M. Fuller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Jensen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terry Tupling

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge