Daniel Hormigo
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Hormigo.
Applied and Environmental Microbiology | 2007
Jesús Torres-Bacete; Daniel Hormigo; Maribel Stuart; Miguel Arroyo; Pedro Torres; María Pilar Castillón; Carmen Acebal; José Luis García; Isabel de la Mata
ABSTRACT Aculeacin A acylase from Actinoplanes utahensis produced by Streptomyces lividans revealed acylase activities that are able to hydrolyze penicillin V and several natural aliphatic penicillins. Penicillin K was the best substrate, showing a catalytic efficiency of 34.79 mM−1 s−1. Furthermore, aculeacin A acylase was highly thermostable, with a midpoint transition temperature of 81.5°C.
Bioresource Technology | 2010
Daniel Hormigo; Isabel de la Mata; Carmen Acebal; Miguel Arroyo
Aculeacin A acylase from Actinoplanes utahensis (AuAAC), an amidohydrolase able to catalyze the acyl moieties of antifungal echinocandin antibiotics, has been also described to efficiently hydrolyze penicillin V and natural aliphatic penicillins to yield 6-aminopenicillanic acid (6-APA). Hence, taking into account its potential use in the synthesis of beta-lactam antibiotics as well as antifungal echinocandins, the recombinant enzyme was covalently immobilized onto several epoxy-activated supports in order to obtain a robust biocatalyst to be used in industrial bioreactors. The best biocatalyst was obtained by attaching the enzyme on Sepabeads EC-EP5 where immobilized AuAAC was homogeneously distributed over the surface of this support as shown by confocal scanning microscopy. The obtained biocatalyst showed a specific enzymatic activity of 35.2 IU/g wet carrier in the hydrolysis of penicillin V at pH 8.0 and 45 degrees C. Temperature-activity profile of immobilized AuAAC at pH 8.0 showed that the highest activity for the hydrolysis of penicillin V was achieved at 75 degrees C, whereas pH-activity profile at 40 degrees C indicated the highest activity for the hydrolysis of penicillin V was achieved at pH 8.5. The immobilized enzyme was highly thermostable since it suffered no loss of activity at 65 degrees C and pH 8.0 during 360 min, and it could be recycled for at least 30 consecutive batch reactions at pH 8.0 and 45 degrees C without loss of catalytic activity. Substrate specificity of the derivative also showed its ability to efficiently hydrolyze other natural aliphatic penicillins such as penicillins K, F and dihydroF besides its own substrate aculeacin A. Such interesting properties of this immobilized biocatalyst could allow its exploitation in industrial preparation of beta-lactam antibiotics and echinocandins.
Applied and Environmental Microbiology | 2015
Jesús Torres-Bacete; Daniel Hormigo; Raquel Torres-Guzmán; Miguel Arroyo; María Pilar Castillón; José Luis García; Carmen Acebal; Isabel de la Mata
ABSTRACT The pva gene from Streptomyces lavendulae ATCC 13664, encoding a novel penicillin V acylase (SlPVA), has been isolated and characterized. The gene encodes an inactive precursor protein containing a secretion signal peptide that is activated by two internal autoproteolytic cleavages that release a 25-amino-acid linker peptide and two large domains of 18.79 kDa (α-subunit) and 60.09 kDa (β-subunit). Based on sequence alignments and the three-dimensional model of SlPVA, the enzyme contains a hydrophobic pocket involved in catalytic activity, including Serβ1, Hisβ23, Valβ70, and Asnβ272, which were confirmed by site-directed mutagenesis studies. The heterologous expression of pva in S. lividans led to the production of an extracellularly homogeneous heterodimeric enzyme at a 5-fold higher concentration (959 IU/liter) than in the original host and in a considerably shorter time. According to the catalytic properties of SlPVA, the enzyme must be classified as a new member of the Ntn-hydrolase superfamily, which belongs to a novel subfamily of acylases that recognize substrates with long hydrophobic acyl chains and have biotechnological applications in semisynthetic antifungal production.
Biocatalysis and Biotransformation | 2009
Daniel Hormigo; Isabel de la Mata; María Pilar Castillón; Carmen Acebal; Miguel Arroyo
Recombinant penicillin acylase from Streptomyces lavendulae was covalently bound to epoxy-activated Sepabeads EC-EP303®. Optimization of the immobilization process led to a homogeneous distribution of the enzyme on the support surface avoiding the attachment of enzyme aggregates, as shown by confocal electron microscopy. The optimal immobilized biocatalyst had a specific enzymatic activity of 26.2IUgwetcarrier−1 in the hydrolysis of penicillin V at pH 8.0 and 40°C. This biocatalyst showed the highest activity at pH 8.5 and 65°C, 1.5 pH units lower and 5°C higher than its soluble counterpart. Substrate specificity of the derivative also showed its ability to efficiently hydrolyze other natural aliphatic penicillins such as penicillins K, F and dihydroF. The immobilized enzyme was highly stable at 40°C and pH 8.0 (t1/2=625 h vs. t1/2=397 h for the soluble enzyme), and it could be recycled for at least 30 consecutive batch reactions without loss of catalytic activity.
PLOS ONE | 2013
Javier García-Hidalgo; Daniel Hormigo; Miguel Arroyo; Isabel de la Mata
The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZSa), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZSa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZSa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser131-Asp209-His269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZSa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZSa make it an interesting candidate for industrial applications involving PHB degradation.
Genome Announcements | 2015
Rodrigo Velasco-Bucheli; Carlos del Cerro; Daniel Hormigo; Carmen Acebal; Miguel Arroyo; José Luis García; Isabel de la Mata
ABSTRACT Here, we describe the draft genome sequence of Actinoplanes utahensis NRRL 12052, a filamentous bacterium that encodes an aculeacin A acylase and a putative N-acyl-homoserine lactone acylase of biotechnological interest. Moreover, several nonribosomal peptide synthase (NRPS) and polyketide synthase (PKS) clusters and antibiotic resistance genes have been identified.
Enzyme Research | 2011
Jessica Kopf; Daniel Hormigo; José Luis García; Carmen Acebal; Isabel de la Mata; Miguel Arroyo
Inhibition of recombinant D-amino acid oxidase from Trigonopsis variabilis (TvDAAO) activity in the presence of different sodium salts and potassium chloride is reported. A competitive inhibition pattern by sodium chloride was observed, and an inhibition constant value of Ki = 85 mM was calculated. Direct connection of NaCl inhibition with FAD cofactor dissociation was confirmed by measuring the fluorescence of tryptophanyl residues of the holoenzyme.
Applied Microbiology and Biotechnology | 2018
Azadeh Beygmoradi; Ahmad Homaei; Roohullah Hemmati; Paloma Santos-Moriano; Daniel Hormigo; Jesús Fernández-Lucas
Chitinolytic enzymes are capable to catalyze the chitin hydrolysis. Due to their biomedical and biotechnological applications, nowadays chitinolytic enzymes have attracted worldwide attention. Chitinolytic enzymes have provided numerous useful materials in many different industries, such as food, pharmaceutical, cosmetic, or biomedical industry. Marine enzymes are commonly employed in industry because they display better operational properties than animal, plant, or bacterial homologs. In this mini-review, we want to describe marine chitinolytic enzymes as versatile enzymes in different biotechnological fields. In this regard, interesting comments about their biological role, reaction mechanism, production, functional characterization, immobilization, and biotechnological application are shown in this work.
Biochimica et Biophysica Acta | 2007
Miguel Arroyo; Margarita Menéndez; José Luis García; Nuria E. Campillo; Daniel Hormigo; Isabel de la Mata; María Pilar Castillón; Carmen Acebal
Catalysts | 2018
Jon del Arco; Sara Martínez-Pascual; Vicente Javier Clemente-Suárez; Octavio Corral; Justin Jordaan; Daniel Hormigo; Almudena Perona; Jesús Fernández-Lucas