Daniel Hornburg
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Hornburg.
Science | 2016
Andreas Woerner; Frédéric Frottin; Daniel Hornburg; Li R. Feng; Felix Meissner; Maria Patra; Jörg Tatzelt; Matthias Mann; Konstanze F. Winklhofer; F. Ulrich Hartl; Mark S. Hipp
Location, location, location Aggregates of certain disease-associated proteins are involved in neurodegeneration. Woerner et al. now show that the exact location of these aggregates in the cell may be the key to their pathology (see the Perspective by Da Cruz and Cleveland). An artificial aggregate-prone protein caused problems when expressed in the cytoplasm but not when expressed in the nucleus. Cytoplasmic aggregates interfered with nucleocytoplasmic import and export. Perhaps if we can shunt pathological aggregates to the nucleus in the future, we will be able to ameliorate some forms of degenerative disease. Science, this issue p. 173; see also p. 125 Protein aggregates in the cytoplasm soak up accessory factors needed for transport of other proteins and RNA across the nuclear envelope. [Also see Perspective by Da Cruz and Cleveland] Amyloid-like protein aggregation is associated with neurodegeneration and other pathologies. The nature of the toxic aggregate species and their mechanism of action remain elusive. Here, we analyzed the compartment specificity of aggregate toxicity using artificial β-sheet proteins, as well as fragments of mutant huntingtin and TAR DNA binding protein–43 (TDP-43). Aggregation in the cytoplasm interfered with nucleocytoplasmic protein and RNA transport. In contrast, the same proteins did not inhibit transport when forming inclusions in the nucleus at or around the nucleolus. Protein aggregation in the cytoplasm, but not the nucleus, caused the sequestration and mislocalization of proteins containing disordered and low-complexity sequences, including multiple factors of the nuclear import and export machinery. Thus, impairment of nucleocytoplasmic transport may contribute to the cellular pathology of various aggregate deposition diseases.
Nature | 2015
Michael Willem; Sabina Tahirovic; Marc Aurel Busche; Saak V. Ovsepian; Magda Chafai; Scherazad Kootar; Daniel Hornburg; Lewis D. B. Evans; Steven A. Moore; Anna Daria; Heike Hampel; Veronika Müller; Camilla Giudici; Brigitte Nuscher; Andrea Wenninger-Weinzierl; Elisabeth Kremmer; Michael T. Heneka; Dietmar R. Thal; Vilmantas Giedraitis; Lars Lannfelt; Ulrike Müller; Frederick J. Livesey; Felix Meissner; Jochen Herms; Arthur Konnerth; Hélène Marie; Christian Haass
Alzheimer disease (AD) is characterized by the accumulation of amyloid plaques, which are predominantly composed of amyloid-β peptide. Two principal physiological pathways either prevent or promote amyloid-β generation from its precursor, β-amyloid precursor protein (APP), in a competitive manner. Although APP processing has been studied in great detail, unknown proteolytic events seem to hinder stoichiometric analyses of APP metabolism in vivo. Here we describe a new physiological APP processing pathway, which generates proteolytic fragments capable of inhibiting neuronal activity within the hippocampus. We identify higher molecular mass carboxy-terminal fragments (CTFs) of APP, termed CTF-η, in addition to the long-known CTF-α and CTF-β fragments generated by the α- and β-secretases ADAM10 (a disintegrin and metalloproteinase 10) and BACE1 (β-site APP cleaving enzyme 1), respectively. CTF-η generation is mediated in part by membrane-bound matrix metalloproteinases such as MT5-MMP, referred to as η-secretase activity. η-Secretase cleavage occurs primarily at amino acids 504–505 of APP695, releasing a truncated ectodomain. After shedding of this ectodomain, CTF-η is further processed by ADAM10 and BACE1 to release long and short Aη peptides (termed Aη-α and Aη-β). CTFs produced by η-secretase are enriched in dystrophic neurites in an AD mouse model and in human AD brains. Genetic and pharmacological inhibition of BACE1 activity results in robust accumulation of CTF-η and Aη-α. In mice treated with a potent BACE1 inhibitor, hippocampal long-term potentiation was reduced. Notably, when recombinant or synthetic Aη-α was applied on hippocampal slices ex vivo, long-term potentiation was lowered. Furthermore, in vivo single-cell two-photon calcium imaging showed that hippocampal neuronal activity was attenuated by Aη-α. These findings not only demonstrate a major functionally relevant APP processing pathway, but may also indicate potential translational relevance for therapeutic strategies targeting APP processing.
Molecular & Cellular Proteomics | 2014
Richard A. Scheltema; Jan-Peter Hauschild; Oliver Lange; Daniel Hornburg; Eduard Denisov; Eugen Damoc; Andreas Kuehn; Alexander Makarov; Matthias Mann
The quadrupole Orbitrap mass spectrometer (Q Exactive) made a powerful proteomics instrument available in a benchtop format. It significantly boosted the number of proteins analyzable per hour and has now evolved into a proteomics analysis workhorse for many laboratories. Here we describe the Q Exactive Plus and Q Exactive HF mass spectrometers, which feature several innovations in comparison to the original Q Exactive instrument. A low-resolution pre-filter has been implemented within the injection flatapole, preventing unwanted ions from entering deep into the system, and thereby increasing its robustness. A new segmented quadrupole, with higher fidelity of isolation efficiency over a wide range of isolation windows, provides an almost 2-fold improvement of transmission at narrow isolation widths. Additionally, the Q Exactive HF has a compact Orbitrap analyzer, leading to higher field strength and almost doubling the resolution at the same transient times. With its very fast isolation and fragmentation capabilities, the instrument achieves overall cycle times of 1 s for a top 15 to 20 higher energy collisional dissociation method. We demonstrate the identification of 5000 proteins in standard 90-min gradients of tryptic digests of mammalian cell lysate, an increase of over 40% for detected peptides and over 20% for detected proteins. Additionally, we tested the instrument on peptide phosphorylation enriched samples, for which an improvement of up to 60% class I sites was observed.
Molecular & Cellular Proteomics | 2015
Scarlet Beck; Annette Michalski; Oliver Raether; Markus Lubeck; Stephanie Kaspar; Niels Goedecke; Carsten Baessmann; Daniel Hornburg; Florian Meier; Igor Paron; Nils A. Kulak; Juergen Cox; Matthias Mann
Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum—the highest proteome coverage reported with a QTOF instrument so far.
Diabetes | 2016
Asger Lund; Jonatan I. Bagger; Nicolai J. Wewer Albrechtsen; Mikkel Christensen; Magnus F. Grøndahl; Bolette Hartmann; Elisabeth R. Mathiesen; Carsten Palnæs Hansen; Jan Storkholm; Gerrit van Hall; Jens F. Rehfeld; Daniel Hornburg; Felix Meissner; Matthias Mann; Steen Larsen; Jens J. Holst; Tina Vilsbøll; Filip K. Knop
Glucagon is believed to be a pancreas-specific hormone, and hyperglucagonemia has been shown to contribute significantly to the hyperglycemic state of patients with diabetes. This hyperglucagonemia has been thought to arise from α-cell insensitivity to suppressive effects of glucose and insulin combined with reduced insulin secretion. We hypothesized that postabsorptive hyperglucagonemia represents a gut-dependent phenomenon and subjected 10 totally pancreatectomized patients and 10 healthy control subjects to a 75-g oral glucose tolerance test and a corresponding isoglycemic intravenous glucose infusion. We applied novel analytical methods of plasma glucagon (sandwich ELISA and mass spectrometry–based proteomics) and show that 29–amino acid glucagon circulates in patients without a pancreas and that glucose stimulation of the gastrointestinal tract elicits significant hyperglucagonemia in these patients. These findings emphasize the existence of extrapancreatic glucagon (perhaps originating from the gut) in man and suggest that it may play a role in diabetes secondary to total pancreatectomy.
Nature Immunology | 2017
Jan C. Rieckmann; Roger Geiger; Daniel Hornburg; Tobias Wolf; Ksenya Kveler; David Jarrossay; Federica Sallusto; Shai S Shen-Orr; Antonio Lanzavecchia; Matthias Mann; Felix Meissner
The immune system is unique in its dynamic interplay between numerous cell types. However, a system-wide view of how immune cells communicate to protect against disease has not yet been established. We applied high-resolution mass-spectrometry-based proteomics to characterize 28 primary human hematopoietic cell populations in steady and activated states at a depth of >10,000 proteins in total. Protein copy numbers revealed a specialization of immune cells for ligand and receptor expression, thereby connecting distinct immune functions. By integrating total and secreted proteomes, we discovered fundamental intercellular communication structures and previously unknown connections between cell types. Our publicly accessible (http://www.immprot.org/) proteomic resource provides a framework for the orchestration of cellular interplay and a reference for altered communication associated with pathology.
Molecular & Cellular Proteomics | 2014
Daniel Hornburg; Carsten Drepper; Falk Butter; Felix Meissner; Michael Sendtner; Matthias Mann
The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Leslie Ripaud; Victoria Chumakova; Matthias Antonin; Alex R. Hastie; Stefan Pinkert; Roman Körner; Kiersten M. Ruff; Rohit V. Pappu; Daniel Hornburg; Matthias Mann; F. Ulrich Hartl; Mark S. Hipp
Significance Expansion of a poly-glutamine (polyQ) repeat is the causal mutation of several inherited neurological disorders, including Huntington’s disease. In a yeast genetic screen, we identified several proteins with Q-rich, prion-like domains that reduce the toxicity of mutant polyQ proteins when overexpressed. One of these, glycine threonine serine repeat protein (Gts1p), was characterized in more detail. Association with Gts1p did not prevent aggregation but altered the physical properties and the interactome of the aggregates. Specifically, Gts1p expression reduced the sequestration of other prion-like proteins into the polyQ aggregates. These findings link polyQ toxicity in yeast with the coaggregation of prion proteins and show that short Q-rich peptides are able to shield toxic forms of polyQ proteins, directing them into nontoxic aggregates. Expansion of a poly-glutamine (polyQ) repeat in a group of functionally unrelated proteins is the cause of several inherited neurodegenerative disorders, including Huntington’s disease. The polyQ length-dependent aggregation and toxicity of these disease proteins can be reproduced in Saccharomyces cerevisiae. This system allowed us to screen for genes that when overexpressed reduce the toxic effects of an N-terminal fragment of mutant huntingtin with 103 Q. Surprisingly, among the identified suppressors were three proteins with Q-rich, prion-like domains (PrDs): glycine threonine serine repeat protein (Gts1p), nuclear polyadenylated RNA-binding protein 3, and minichromosome maintenance protein 1. Overexpression of the PrD of Gts1p, containing an imperfect 28 residue glutamine-alanine repeat, was sufficient for suppression of toxicity. Association with this discontinuous polyQ domain did not prevent 103Q aggregation, but altered the physical properties of the aggregates, most likely early in the assembly pathway, as reflected in their increased SDS solubility. Molecular simulations suggested that Gts1p arrests the aggregation of polyQ molecules at the level of nonfibrillar species, acting as a cap that destabilizes intermediates on path to form large fibrils. Quantitative proteomic analysis of polyQ interactors showed that expression of Gts1p reduced the interaction between polyQ and other prion-like proteins, and enhanced the association of molecular chaperones with the aggregates. These findings demonstrate that short, Q-rich peptides are able to shield the interactive surfaces of toxic forms of polyQ proteins and direct them into nontoxic aggregates.
Nature Neuroscience | 2016
Rajeeve Sivadasan; Daniel Hornburg; Carsten Drepper; Nicolas Frank; Sibylle Jablonka; Anna Hansel; Xenia Lojewski; Jared Sterneckert; Andreas Hermann; Pamela J. Shaw; Matthias Mann; Felix Meissner; Michael Sendtner
Intronic hexanucleotide expansions in C9ORF72 are common in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non-ATG-initiated translation are responsible for the pathophysiology. We determined the interactome of C9ORF72 in motor neurons and found that C9ORF72 was present in a complex with cofilin and other actin binding proteins. Phosphorylation of cofilin was enhanced in C9ORF72-depleted motor neurons, in patient-derived lymphoblastoid cells, induced pluripotent stem cell–derived motor neurons and post-mortem brain samples from ALS patients. C9ORF72 modulates the activity of the small GTPases Arf6 and Rac1, resulting in enhanced activity of LIM-kinases 1 and 2 (LIMK1/2). This results in reduced axonal actin dynamics in C9ORF72-depleted motor neurons. Dominant negative Arf6 rescues this defect, suggesting that C9ORF72 acts as a modulator of small GTPases in a pathway that regulates axonal actin dynamics.
EBioMedicine | 2016
Nicolai J. Wewer Albrechtsen; Daniel Hornburg; Reidar Albrechtsen; Berit Svendsen; Signe Toräng; Sara L. Jepsen; Rune E. Kuhre; Marie Hansen; Charlotte Janus; Andrea Karen Floyd; Asger Lund; Tina Vilsbøll; Filip K. Knop; Henrik Vestergaard; Carolyn F. Deacon; Felix Meissner; Matthias Mann; Jens J. Holst; Bolette Hartmann
Low-abundance regulatory peptides, including metabolically important gut hormones, have shown promising therapeutic potential. Here, we present a streamlined mass spectrometry-based platform for identifying and characterizing low-abundance regulatory peptides in humans. We demonstrate the clinical applicability of this platform by studying a hitherto neglected glucose- and appetite-regulating gut hormone, namely, oxyntomodulin. Our results show that the secretion of oxyntomodulin in patients with type 2 diabetes is significantly impaired, and that its level is increased by more than 10-fold after gastric bypass surgery. Furthermore, we report that oxyntomodulin is co-distributed and co-secreted with the insulin-stimulating and appetite-regulating gut hormone glucagon-like peptide-1 (GLP-1), is inactivated by the same protease (dipeptidyl peptidase-4) as GLP-1 and acts through its receptor. Thus, oxyntomodulin may participate with GLP-1 in the regulation of glucose metabolism and appetite in humans. In conclusion, this mass spectrometry-based platform is a powerful resource for identifying and characterizing metabolically active low-abundance peptides.