Daniel I. Perez
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel I. Perez.
Journal of Alzheimer's Disease | 2008
Ana Martinez; Daniel I. Perez
Alzheimers disease (AD) is the most common form of dementia affecting more than 15 millions individuals worldwide. While the cause is unknown, there are two major neuropathological abnormalities present in the brains of patients with AD, the extracellular senile plaques and the intracellular neurofibrillary tangles. There is strong evidence that glycogen synthase kinase-3 (GSK-3) plays an important role in AD being involved in the regulation of these neuropathological hallmarks. Increased activity and/or overexpression of this enzyme in AD is associated with increased tau hyperphosphorylation and alterations in amyloid-beta processing that are thought to precede the formation of neurofibrillary tangles and senile plaques, respectively. Furthermore, over activity of GSK-3 is also involved in neuronal loss. These data clearly identify GSK-3 inhibitors as one of the most promising new approaches for the future treatment of AD and a reduction of the aberrant over activity of this enzyme might decrease several aspects of the neuronal pathology in AD. In this review, we provide an overview of the rationale for the development of GSK-3 inhibitors for the treatment of AD, discussing the risks and benefits of this approach.
Medicinal Research Reviews | 2011
Daniel I. Perez; Carmen Gil; Ana Martinez
Following the discovery of the human kinome, protein kinases have become the second most important group of drug targets as they can be modulated by small ligand molecules. Moreover, orally active protein kinase inhibitors have recently reached the market and there are many more in clinical trials. The lack of treatments for neurodegenerative diseases has increased human and financial efforts in the search for new therapeutic targets that could provide new effective drug candidates. The importance of kinases in the molecular pathway of neuronal survival is under study, but different key pathways have been described. New roles for the old casein kinases 1 and 2, currently known as protein kinases CK1 and CK2, have recently been discovered in the molecular pathology of different neurodegenerative disorders, such as Alzheimers and Parkinsons diseases and amyotrophic lateral sclerosis. The search for specific inhibitors of these enzymes has become an important challenge for the treatment of these devastating diseases. The role of these two kinases in the molecular pathology of different neurodegenerative diseases together with different chemical families that are able to more or less specifically inhibit CK1 and CK2 are discussed in this review.
International Journal of Alzheimer's Disease | 2011
Ana Martinez; Carmen Gil; Daniel I. Perez
Glycogen synthase kinase 3 (GSK-3), a proline/serine protein kinase ubiquitously expressed and involved in many cellular signaling pathways, plays a key role in the pathogenesis of Alzheimers disease (AD) being probably the link between β-amyloid and tau pathology. A great effort has recently been done in the discovery and development of different new molecules, of synthetic and natural origin, able to inhibit this enzyme, and several kinetics mechanisms of binding have been described. The small molecule called tideglusib belonging to the thiadiazolidindione family is currently on phase IIb clinical trials for AD. The potential risks and benefits of this new kind of disease modifying drugs for the future therapy of AD are discussed in this paper.
Journal of Medicinal Chemistry | 2011
Valle Palomo; Ignacio Soteras; Daniel I. Perez; Concepción Pérez; Carmen Gil; Nuria E. Campillo; Ana Martinez
Glycogen synthase kinase 3 (GSK-3) is an important drug target for human severe unmet diseases. Discovery and/or design of allosteric kinase modulators are gaining importance in this field not only for the increased selectivity of this kind of compounds but also for the subtle modulation of the target. This last point is of utmost importance for the GSK-3 inhibition as a therapeutic approach. GSK-3 activity is completely necessary for life, and only the aberrant overactivity found in the pathologies should be inhibited with its inhibitors treatment. We performed here a search for the druggable sites on the enzyme using the fpocket algorithm with the aim to provide allosteric potential binding sites on it and new clues for further drug discoveries. Moreover, our results allowed us to determine the binding sites of different GSK-3 ATP noncompetitive inhibitors, such as manzamine A and the new small molecule VP 0.7, providing evidence for potential allosteric inhibition of GSK-3.
Journal of Medicinal Chemistry | 2011
Daniel I. Perez; Valle Palomo; Concepción Pérez; Carmen Gil; Pablo D. Dans; F. Javier Luque; Santiago Conde; Ana Martinez
Development of kinase-targeted therapies for central nervous system (CNS) diseases is a great challenge. Glycogen synthase kinase 3 (GSK-3) offers a great potential for severe CNS unmet diseases, being one of the inhibitors on clinical trials for different tauopathies. Following our hypothesis based on the enhanced reactivity of residue Cys199 in the binding site of GSK-3, we examine here the suitability of phenylhalomethylketones as irreversible inhibitors. Our data confirm that the halomethylketone unit is essential for the inhibitory activity. Moreover, addition of the halomethylketone moiety to reversible inhibitors turned them into irreversible inhibitors with IC(50) values in the nanomolar range. Overall, the results point out that these compounds might be useful pharmacological tools to explore physiological and pathological processes related to signaling pathways regulated by GSK-3 opening new avenues for the discovery of novel GSK-3 inhibitors.
Angewandte Chemie | 2015
Federica Prati; Angela De Simone; Paola Bisignano; Andrea Armirotti; Maria Summa; Daniela Pizzirani; Rita Scarpelli; Daniel I. Perez; Vincenza Andrisano; Ana Perez-Castillo; Barbara Monti; Francesca Massenzio; Letizia Polito; Marco Racchi; Angelo D. Favia; Giovanni Bottegoni; Ana Martinez; Maria Laura Bolognesi; Andrea Cavalli
Cumulative evidence strongly supports that the amyloid and tau hypotheses are not mutually exclusive, but concomitantly contribute to neurodegeneration in Alzheimers disease (AD). Thus, the development of multitarget drugs which are involved in both pathways might represent a promising therapeutic strategy. Accordingly, reported here in is the discovery of 6-amino-4-phenyl-3,4-dihydro-1,3,5-triazin-2(1H)-ones as the first class of molecules able to simultaneously modulate BACE-1 and GSK-3β. Notably, one triazinone showed well-balanced in vitro potencies against the two enzymes (IC50 of (18.03±0.01) μM and (14.67±0.78) μM for BACE-1 and GSK-3β, respectively). In cell-based assays, it displayed effective neuroprotective and neurogenic activities and no neurotoxicity. It also showed good brain permeability in a preliminary pharmacokinetic assessment in mice. Overall, triazinones might represent a promising starting point towards high quality lead compounds with an AD-modifying potential.
Journal of Medicinal Chemistry | 2012
Valle Palomo; Daniel I. Perez; Concepción Pérez; José A. Morales-García; Ignacio Soteras; Sandra Alonso-Gil; Arantxa Encinas; Ana Castro; Nuria E. Campillo; Ana Perez-Castillo; Carmen Gil; Ana Martinez
Cumulative evidence strongly supports that glycogen synthase kinase-3 (GSK-3) is a pathogenic molecule when it is up-dysregulated, emerging as an important therapeutic target in severe unmet human diseases. GSK-3 specific inhibitors might be promising effective drugs for the treatment of devastating pathologies such as neurodegenerative diseases, stroke, and mood disorders. As GSK-3 has the ability to phosphorylate primed substrates, small molecules able to bind to this site should be perfect drug candidates, able to partially block the activity of the enzyme over some specific substrates. Here, we report substituted 5-imino-1,2,4-thiadiazoles as the first small molecules able to inhibit GSK-3 in a substrate competitive manner. These compounds are cell permeable, able to decrease inflammatory activation and to selectively differentiate neural stem cells. Overall, 5-imino-1,2,4-thiadiazoles are presented here as new molecules able to decrease neuronal cell death and to increase endogenous neurogenesis blocking the GSK-3 substrate site.
PLOS ONE | 2011
Irene Paterniti; Emanuela Mazzon; Carmen Gil; Daniela Impellizzeri; Valle Palomo; Myriam Redondo; Daniel I. Perez; Emanuela Esposito; Ana Martinez; Salvatore Cuzzocrea
Background Primary traumatic mechanical injury to the spinal cord (SCI) causes the death of a number of neurons that to date can neither be recovered nor regenerated. During the last years our group has been involved in the design, synthesis and evaluation of PDE7 inhibitors as new innovative drugs for several neurological disorders. Our working hypothesis is based on two different facts. Firstly, neuroinflammation is modulated by cAMP levels, thus the key role for phosphodiesterases (PDEs), which hydrolyze cAMP, is undoubtedly demonstrated. On the other hand, PDE7 is expressed simultaneously on leukocytes and on the brain, highlighting the potential crucial role of PDE7 as drug target for neuroinflammation. Methodology/Principal Findings Here we present two chemically diverse families of PDE7 inhibitors, designed using computational techniques such as virtual screening and neuronal networks. We report their biological profile and their efficacy in an experimental SCI model induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5–T8 laminectomy. We have selected two candidates, namely S14 and VP1.15, as PDE7 inhibitors. These compounds increase cAMP production both in macrophage and neuronal cell lines. Regarding drug-like properties, compounds were able to cross the blood brain barrier using parallel artificial membranes (PAMPA) methodology. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with S14 and VP1.15, two PDE7 inhibitors, significantly reduced the degree of spinal cord inflammation, tissue injury (histological score), and TNF-α, IL-6, COX-2 and iNOS expression. Conclusions/Significance All these data together led us to propose PDE7 inhibitors, and specifically S14 and VP1.15, as potential drug candidates to be further studied for the treatment of SCI.
Neurobiology of Aging | 2013
Rocio Perez-Gonzalez; Consuelo Pascual; Desiree Antequera; Marta Bolós; Miriam Redondo; Daniel I. Perez; Virginia Pérez-Grijalba; Agnieszka Krzyzanowska; Manuel Sarasa; Carmen Gil; Isidro Ferrer; Ana Martinez; Eva Carro
Elevated levels of amyloid beta (Aβ) peptide, hyperphosphorylation of tau protein, and inflammation are pathological hallmarks in Alzheimers disease (AD). Phosphodiesterase 7 (PDE7) regulates the inflammatory response through the cyclic adenosine monophosphate signaling cascade, and thus plays a central role in AD. The aim of this study was to evaluate the efficacy of an inhibitor of PDE7, named S14, in a mouse model of AD. We report that APP/Ps1 mice treated daily for 4 weeks with S14 show: (1) significant attenuation in behavioral impairment; (2) decreased brain Aβ deposition; (3) enhanced astrocyte-mediated Aβ degradation; and (4) decreased tau phosphorylation. These effects are mediated via the cyclic adenosine monophosphate/cyclic adenosine monophosphate response element-binding protein signaling pathway, and inactivation of glycogen synthase kinase (GSK)3. Our data support the use of PDE7 inhibitors, and specifically S14, as effective therapeutic agents for the prevention and treatment of AD.
ACS Chemical Neuroscience | 2013
José A. Morales-García; Cristina Susín; Sandra Alonso-Gil; Daniel I. Perez; Valle Palomo; Concepción Pérez; Santiago Conde; Angel Santos; Carmen Gil; Ana Martinez; Ana Perez-Castillo
Parkinsons disease (PD) is a devastating neurodegenerative disorder characterized by degeneration of the nigrostriatal dopaminergic pathway. Because the current therapies only lead to temporary, limited improvement and have severe side effects, new approaches to treat PD need to be developed. To discover new targets for potential therapeutic intervention, a chemical genetic approach involving the use of small molecules as pharmacological tools has been implemented. First, a screening of an in-house chemical library on a well-established cellular model of PD was done followed by a detailed pharmacological analysis of the hits. Here, we report the results found for the small heterocyclic derivative called SC001, which after different enzymatic assays was revealed to be a new glycogen synthase kinase-3 (GSK-3) inhibitor with IC(50) = 3.38 ± 0.08 μM. To confirm that GSK-3 could be a good target for PD, the evaluation of a set of structurally diverse GSK-3 inhibitors as neuroprotective agents for PD was performed. Results show that inhibitors of GSK-3 have neuroprotective effects in vitro representing a new pharmacological option for the disease-modifying treatment of PD. Furthermore, we show that SC001 is able to cross the blood-brain barrier, protects dopaminergic neurons, and reduces microglia activation in in vivo models of Parkinson disease, being a good candidate for further drug development.