Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valle Palomo is active.

Publication


Featured researches published by Valle Palomo.


Biological Psychiatry | 2014

Glycogen synthase kinase-3 inhibitors reverse deficits in long-term potentiation and cognition in fragile X mice.

Aimee V. Franklin; Margaret K. King; Valle Palomo; Ana Martinez; Lori L. McMahon; Richard S. Jope

BACKGROUND Identifying feasible therapeutic interventions is crucial for ameliorating the intellectual disability and other afflictions of fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism. Hippocampal glycogen synthase kinase-3 (GSK3) is hyperactive in the mouse model of FXS (FX mice), and hyperactive GSK3 promotes locomotor hyperactivity and audiogenic seizure susceptibility in FX mice, raising the possibility that specific GSK3 inhibitors may improve cognitive processes. METHODS We tested if specific GSK3 inhibitors improve deficits in N-methyl-D-aspartate receptor-dependent long-term potentiation at medial perforant path synapses onto dentate granule cells and dentate gyrus-dependent cognitive behavioral tasks. RESULTS GSK3 inhibitors completely rescued deficits in long-term potentiation at medial perforant path-dentate granule cells synapses in FX mice. Furthermore, synaptosomes from the dentate gyrus of FX mice displayed decreased inhibitory serine-phosphorylation of GSK3β compared with wild-type littermates. The potential therapeutic utility of GSK3 inhibitors was further tested on dentate gyrus-dependent cognitive behaviors. In vivo administration of GSK3 inhibitors completely reversed impairments in several cognitive tasks in FX mice, including novel object detection, coordinate and categorical spatial processing, and temporal ordering for visual objects. CONCLUSIONS These findings establish that synaptic plasticity and cognitive deficits in FX mice can be improved by intervention with inhibitors of GSK3, which may prove therapeutically beneficial in FXS.


ACS Chemical Neuroscience | 2012

Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo

José A. Morales-García; Rosario Luna-Medina; Sandra Alonso-Gil; Marina Sanz-SanCristobal; Valle Palomo; Carmen Gil; Angel Santos; Ana Martinez; Ana Perez-Castillo

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase originally identified as a regulator of glycogen metabolism but it also plays a pivotal role in numerous cellular functions, including differentiation, cell cycle regulation, and proliferation. The dentate gyrus of the hippocampus, together with the subventricular zone of the lateral ventricles, is one of the regions in which neurogenesis takes place in the adult brain. Here, using a chemical genetic approach that involves the use of several diverse inhibitors of GSK-3 as pharmacological tools, we show that inhibition of GSK-3 induces proliferation, migration, and differentiation of neural stem cells toward a neuronal phenotype in in vitro studies. Also, we demonstrate that inhibition of GSK-3 with the small molecule NP03112, called tideglusib, induces neurogenesis in the dentate gyrus of the hippocampus of adult rats. Taken together, our results suggest that GSK-3 should be considered as a new target molecule for modulating the production and integration of new neurons in the hippocampus as a treatment for neurodegenerative diseases or brain injury and, consequently, its inhibitors may represent new potential therapeutic drugs in neuroregenerative medicine.


Journal of Medicinal Chemistry | 2011

Exploring the Binding Sites of Glycogen Synthase Kinase 3. Identification and Characterization of Allosteric Modulation Cavities

Valle Palomo; Ignacio Soteras; Daniel I. Perez; Concepción Pérez; Carmen Gil; Nuria E. Campillo; Ana Martinez

Glycogen synthase kinase 3 (GSK-3) is an important drug target for human severe unmet diseases. Discovery and/or design of allosteric kinase modulators are gaining importance in this field not only for the increased selectivity of this kind of compounds but also for the subtle modulation of the target. This last point is of utmost importance for the GSK-3 inhibition as a therapeutic approach. GSK-3 activity is completely necessary for life, and only the aberrant overactivity found in the pathologies should be inhibited with its inhibitors treatment. We performed here a search for the druggable sites on the enzyme using the fpocket algorithm with the aim to provide allosteric potential binding sites on it and new clues for further drug discoveries. Moreover, our results allowed us to determine the binding sites of different GSK-3 ATP noncompetitive inhibitors, such as manzamine A and the new small molecule VP 0.7, providing evidence for potential allosteric inhibition of GSK-3.


Journal of Medicinal Chemistry | 2011

Switching Reversibility to Irreversibility in Glycogen Synthase Kinase 3 Inhibitors: Clues for Specific Design of New Compounds

Daniel I. Perez; Valle Palomo; Concepción Pérez; Carmen Gil; Pablo D. Dans; F. Javier Luque; Santiago Conde; Ana Martinez

Development of kinase-targeted therapies for central nervous system (CNS) diseases is a great challenge. Glycogen synthase kinase 3 (GSK-3) offers a great potential for severe CNS unmet diseases, being one of the inhibitors on clinical trials for different tauopathies. Following our hypothesis based on the enhanced reactivity of residue Cys199 in the binding site of GSK-3, we examine here the suitability of phenylhalomethylketones as irreversible inhibitors. Our data confirm that the halomethylketone unit is essential for the inhibitory activity. Moreover, addition of the halomethylketone moiety to reversible inhibitors turned them into irreversible inhibitors with IC(50) values in the nanomolar range. Overall, the results point out that these compounds might be useful pharmacological tools to explore physiological and pathological processes related to signaling pathways regulated by GSK-3 opening new avenues for the discovery of novel GSK-3 inhibitors.


Journal of Medicinal Chemistry | 2012

5-Imino-1,2,4-Thiadiazoles: First Small Molecules As Substrate Competitive Inhibitors of Glycogen Synthase Kinase 3

Valle Palomo; Daniel I. Perez; Concepción Pérez; José A. Morales-García; Ignacio Soteras; Sandra Alonso-Gil; Arantxa Encinas; Ana Castro; Nuria E. Campillo; Ana Perez-Castillo; Carmen Gil; Ana Martinez

Cumulative evidence strongly supports that glycogen synthase kinase-3 (GSK-3) is a pathogenic molecule when it is up-dysregulated, emerging as an important therapeutic target in severe unmet human diseases. GSK-3 specific inhibitors might be promising effective drugs for the treatment of devastating pathologies such as neurodegenerative diseases, stroke, and mood disorders. As GSK-3 has the ability to phosphorylate primed substrates, small molecules able to bind to this site should be perfect drug candidates, able to partially block the activity of the enzyme over some specific substrates. Here, we report substituted 5-imino-1,2,4-thiadiazoles as the first small molecules able to inhibit GSK-3 in a substrate competitive manner. These compounds are cell permeable, able to decrease inflammatory activation and to selectively differentiate neural stem cells. Overall, 5-imino-1,2,4-thiadiazoles are presented here as new molecules able to decrease neuronal cell death and to increase endogenous neurogenesis blocking the GSK-3 substrate site.


Journal of the American Chemical Society | 2015

PHOTOLIGATION OF AN AMPHIPHILIC POLYMER WITH MIXED COORDINATION PROVIDES COMPACT AND REACTIVE QUANTUM DOTS

Wentao Wang; Anshika Kapur; Xin Ji; Malak Safi; Goutam Palui; Valle Palomo; Philip E. Dawson; Hedi Mattoussi

We introduce a new set of multicoordinating polymers as ligands that combine two distinct metal-chelating groups, lipoic acid and imidazole, for the surface functionalization of QDs. These ligands combine the benefits of thiol and imidazole coordination to reduce issues of thiol oxidation and weak binding affinity of imidazole. The ligand design relies on the introduction of controllable numbers of lipoic acid and histamine anchors, along with hydrophilic moieties and reactive functionalities, onto a poly(isobutylene-alt-maleic anhydride) chain via a one-step nucleophilic addition reaction. We further demonstrate that this design is fully compatible with a novel and mild photoligation strategy to promote the in situ ligand exchange and phase transfer of hydrophobic QDs to aqueous media under borohydride-free conditions. Ligation with these polymers provides highly fluorescent QDs that exhibit great long-term colloidal stability over a wide range of conditions, including a broad pH range (3-13), storage at nanomolar concentration, under ambient conditions, in 100% growth media, and in the presence of competing agents with strong reducing property. We further show that incorporating reactive groups in the ligands permits covalent conjugation of fluorescent dye and redox-active dopamine to the QDs, producing fluorescent platforms where emission is controlled/tuned by Förster Resonance Energy Transfer (FRET) or pH-dependent charge transfer (CT) interactions. Finally, the polymer-coated QDs have been coupled to cell-penetrating peptides to facilitate intracellular uptake, while subsequent cytotoxicity tests show no apparent decrease in cell viability.


ACS Chemical Neuroscience | 2015

Delivery and Tracking of Quantum Dot Peptide Bioconjugates in an Intact Developing Avian Brain

Rishabh Agarwal; Miriam S. Domowicz; Nancy B. Schwartz; Judy Henry; Igor L. Medintz; James B. Delehanty; Michael H. Stewart; Kimihiro Susumu; Alan L. Huston; Jeffrey R. Deschamps; Philip E. Dawson; Valle Palomo; Glyn Dawson

Luminescent semiconductor ∼9.5 nm nanoparticles (quantum dots: QDs) have intrinsic physiochemical and optical properties which enable us to begin to understand the mechanisms of nanoparticle mediated chemical/drug delivery. Here, we demonstrate the ability of CdSe/ZnS core/shell QDs surface functionalized with a zwitterionic compact ligand to deliver a cell-penetrating lipopeptide to the developing chick embryo brain without any apparent toxicity. Functionalized QDs were conjugated to the palmitoylated peptide WGDap(Palmitoyl)VKIKKP9GGH6, previously shown to uniquely facilitate endosomal escape, and microinjected into the embryonic chick spinal cord canal at embryo day 4 (E4). We were subsequently able to follow the labeling of spinal cord extension into the ventricles, migratory neuroblasts, maturing brain cells, and complex structures such as the choroid plexus. QD intensity extended throughout the brain, and peaked between E8 and E11 when fluorescence was concentrated in the choroid plexus before declining to hatching (E21/P0). We observed no abnormalities in embryonic patterning or embryo survival, and mRNA in situ hybridization confirmed that, at key developmental stages, the expression pattern of genes associated with different brain cell types (brain lipid binding protein, Sox-2, proteolipid protein and Class III-β-Tubulin) all showed a normal labeling pattern and intensity. Our findings suggest that we can use chemically modified QDs to identify and track neural stem cells as they migrate, that the choroid plexus clears these injected QDs/nanoparticles from the brain after E15, and that they can deliver drugs and peptides to the developing brain.


PLOS ONE | 2011

PDE 7 Inhibitors: New Potential Drugs for the Therapy of Spinal Cord Injury

Irene Paterniti; Emanuela Mazzon; Carmen Gil; Daniela Impellizzeri; Valle Palomo; Myriam Redondo; Daniel I. Perez; Emanuela Esposito; Ana Martinez; Salvatore Cuzzocrea

Background Primary traumatic mechanical injury to the spinal cord (SCI) causes the death of a number of neurons that to date can neither be recovered nor regenerated. During the last years our group has been involved in the design, synthesis and evaluation of PDE7 inhibitors as new innovative drugs for several neurological disorders. Our working hypothesis is based on two different facts. Firstly, neuroinflammation is modulated by cAMP levels, thus the key role for phosphodiesterases (PDEs), which hydrolyze cAMP, is undoubtedly demonstrated. On the other hand, PDE7 is expressed simultaneously on leukocytes and on the brain, highlighting the potential crucial role of PDE7 as drug target for neuroinflammation. Methodology/Principal Findings Here we present two chemically diverse families of PDE7 inhibitors, designed using computational techniques such as virtual screening and neuronal networks. We report their biological profile and their efficacy in an experimental SCI model induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5–T8 laminectomy. We have selected two candidates, namely S14 and VP1.15, as PDE7 inhibitors. These compounds increase cAMP production both in macrophage and neuronal cell lines. Regarding drug-like properties, compounds were able to cross the blood brain barrier using parallel artificial membranes (PAMPA) methodology. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with S14 and VP1.15, two PDE7 inhibitors, significantly reduced the degree of spinal cord inflammation, tissue injury (histological score), and TNF-α, IL-6, COX-2 and iNOS expression. Conclusions/Significance All these data together led us to propose PDE7 inhibitors, and specifically S14 and VP1.15, as potential drug candidates to be further studied for the treatment of SCI.


Journal of Immunology | 2013

Regulation of Th1 Cells and Experimental Autoimmune Encephalomyelitis by Glycogen Synthase Kinase-3

Eléonore Beurel; Oksana Kaidanovich-Beilin; Wen I. Yeh; Ling Song; Valle Palomo; Suzanne M. Michalek; James R. Woodgett; Laurie E. Harrington; Hagit Eldar-Finkelman; Ana Martinez; Richard S. Jope

Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the CNS, for which only limited therapeutic interventions are available. Because MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the current study, we tested whether inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or alleviate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts significantly reduced the clinical symptoms of myelin oligodendrocyte glycoprotein35–55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode alleviated clinical symptoms in a relapsing-remitting model of proteolipid protein139–151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to alleviate myelin oligodendrocyte glycoprotein35–55-induced EAE. These results demonstrate the isoform-selective effects of GSK3 on T cell generation and the therapeutic effects of GSK3 inhibitors in EAE, as well as showing that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS.


ACS Chemical Neuroscience | 2013

Glycogen Synthase Kinase‑3 Inhibitors as Potent Therapeutic Agents for the Treatment of Parkinson Disease.

José A. Morales-García; Cristina Susín; Sandra Alonso-Gil; Daniel I. Perez; Valle Palomo; Concepción Pérez; Santiago Conde; Angel Santos; Carmen Gil; Ana Martinez; Ana Perez-Castillo

Parkinsons disease (PD) is a devastating neurodegenerative disorder characterized by degeneration of the nigrostriatal dopaminergic pathway. Because the current therapies only lead to temporary, limited improvement and have severe side effects, new approaches to treat PD need to be developed. To discover new targets for potential therapeutic intervention, a chemical genetic approach involving the use of small molecules as pharmacological tools has been implemented. First, a screening of an in-house chemical library on a well-established cellular model of PD was done followed by a detailed pharmacological analysis of the hits. Here, we report the results found for the small heterocyclic derivative called SC001, which after different enzymatic assays was revealed to be a new glycogen synthase kinase-3 (GSK-3) inhibitor with IC(50) = 3.38 ± 0.08 μM. To confirm that GSK-3 could be a good target for PD, the evaluation of a set of structurally diverse GSK-3 inhibitors as neuroprotective agents for PD was performed. Results show that inhibitors of GSK-3 have neuroprotective effects in vitro representing a new pharmacological option for the disease-modifying treatment of PD. Furthermore, we show that SC001 is able to cross the blood-brain barrier, protects dopaminergic neurons, and reduces microglia activation in in vivo models of Parkinson disease, being a good candidate for further drug development.

Collaboration


Dive into the Valle Palomo's collaboration.

Top Co-Authors

Avatar

Ana Martinez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carmen Gil

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Daniel I. Perez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana Perez-Castillo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José A. Morales-García

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Philip E. Dawson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Concepción Pérez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sandra Alonso-Gil

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Angel Santos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Nuria E. Campillo

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge