Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Caldwell is active.

Publication


Featured researches published by Daniel J. Caldwell.


Environmental Health Perspectives | 2012

Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions?

Alistair B.A. Boxall; Murray A. Rudd; Bryan W. Brooks; Daniel J. Caldwell; Kyungho Choi; Silke Hickmann; Elizabeth Innes; Kim Ostapyk; Jane Staveley; Tim Verslycke; Gerald T. Ankley; Karen Beazley; Scott E. Belanger; Jason P. Berninger; Pedro Carriquiriborde; Anja Coors; Paul C. DeLeo; Scott D. Dyer; Jon F. Ericson; F. Gagné; John P. Giesy; Todd Gouin; Lars Hallstrom; Maja V. Karlsson; D. G. Joakim Larsson; James M. Lazorchak; Frank Mastrocco; Alison McLaughlin; Mark E. McMaster; Roger D. Meyerhoff

Background: Over the past 10–15 years, a substantial amount of work has been done by the scientific, regulatory, and business communities to elucidate the effects and risks of pharmaceuticals and personal care products (PPCPs) in the environment. Objective: This review was undertaken to identify key outstanding issues regarding the effects of PPCPs on human and ecological health in order to ensure that future resources will be focused on the most important areas. Data sources: To better understand and manage the risks of PPCPs in the environment, we used the “key question” approach to identify the principle issues that need to be addressed. Initially, questions were solicited from academic, government, and business communities around the world. A list of 101 questions was then discussed at an international expert workshop, and a top-20 list was developed. Following the workshop, workshop attendees ranked the 20 questions by importance. Data synthesis: The top 20 priority questions fell into seven categories: a) prioritization of substances for assessment, b) pathways of exposure, c) bioavailability and uptake, d) effects characterization, e) risk and relative risk, f ) antibiotic resistance, and g) risk management. Conclusions: A large body of information is now available on PPCPs in the environment. This exercise prioritized the most critical questions to aid in development of future research programs on the topic.


Environmental Toxicology and Chemistry | 2012

Predicted‐no‐effect concentrations for the steroid estrogens estrone, 17β‐estradiol, estriol, and 17α‐ethinylestradiol

Daniel J. Caldwell; Frank Mastrocco; Paul D. Anderson; Reinhard Länge; John P. Sumpter

The authors derive predicted-no-effect concentrations (PNECs) for the steroid estrogens (estrone [E1], 17β-estradiol [E2], estriol [E3], and 17α-ethinylestradiol [EE2]) appropriate for use in risk assessment of aquatic organisms. In a previous study, they developed a PNEC of 0.35 ng/L for EE2 from a species sensitivity distribution (SSD) based on all available chronic aquatic toxicity data. The present study updates that PNEC using recently published data to derive a PNEC of 0.1 ng/L for EE2. For E2, fish were the most sensitive taxa, and chronic reproductive effects were the most sensitive endpoint. Using the SSD methodology, we derived a PNEC of 2 ng/L for E2. Insufficient data were available to construct an SSD for E1 or E3. Therefore, the authors used in vivo vitellogenin (VTG) induction studies to determine the relative potency of the steroid estrogens to induce VTG. Based on the relative differences between in vivo VTG induction, they derive PNECs of 6 and 60 ng/L for E1 and E3, respectively. Thus, for long-term exposures to steroid estrogens in surface water (i.e., >60 d), the PNECs are 6, 2, 60, and 0.1 ng/L for E1, E2, E3, and EE2, respectively. Higher PNECs are recommended for short-term (i.e., a few days or weeks) exposures.


Environmental Toxicology and Chemistry | 2009

Exposure assessment of 17α-ethinylestradiol in surface waters of the United States and Europe†

Robert E. Hannah; Vincent J. D'Aco; Paul D. Anderson; Mary E. Buzby; Daniel J. Caldwell; Virginia L. Cunningham; Jon F. Ericson; Andrew C. Johnson; Neil J. Parke; John H. Samuelian; John P. Sumpter

An evaluation of measured and predicted concentrations of 17-ethinylestradiol in surface waters of the United States and Europe was conducted to develop expected long-term exposure concentrations for this compound. Measured environmental concentrations (MECs) in surface waters were identified from the literature. Predicted environmental concentrations (PECs) were generated for European and U.S. watersheds using the GREAT-ER and PhATE models, respectively. The majority of MECs are nondetect and generally consistent with model PECs and conservative mass balance calculations. However, the highest MECs are not consistent with concentrations derived from conservative (worst-case) mass balance estimates or model PECs. A review of analytical methods suggests that tandem or high-resolution mass spectrometry methods with extract cleanup result in lower detection limits and lower reported concentrations consistent with model predictions and bounding estimates. Based on model results using PhATE and GREAT-ER, the 90th-percentile low-flow PECs in surface water are approximately 0.2 and 0.3 ng/L for the United States and Europe, respectively. These levels represent conservative estimates of long-term exposure that can be used for risk assessment purposes. Our analysis also indicates that average concentrations are one to two orders of magnitude lower than these 90th-percentile estimates. Higher reported concentrations (e.g., greater than the 99th-percentile PEC of approximately 1 ng/L) could result from methodological problems or unusual environmental circumstances; however, such concentrations are not representative of levels generally found in the environment, warrant special scrutiny, and are not appropriate for use in risk assessments of long-term exposures.


Environmental Health Perspectives | 2009

An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water

Daniel J. Caldwell; Frank Mastrocco; Edward Nowak; James Johnston; Harry Yekel; Danielle Pfeiffer; Marilyn Hoyt; Beth M. Duplessie; Paul D. Anderson

Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that prescribed and total estrogens that may potentially be present in drinking water in the United States are not causing adverse effects in U.S. residents, including sensitive subpopulations.


Environmental Toxicology and Chemistry | 2012

Endocrine disruption due to estrogens derived from humans predicted to be low in the majority of U.S. surface waters

Paul D. Anderson; Andrew C. Johnson; Danielle Pfeiffer; Daniel J. Caldwell; Robert E. Hannah; Frank Mastrocco; John P. Sumpter; Richard J. Williams

In an effort to assess the combined risk estrone (E1), 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), and estriol (E3) pose to aquatic wildlife across United States watersheds, two sets of predicted-no-effect concentrations (PNECs) for significant reproductive effects in fish were compared to predicted environmental concentrations (PECs). One set of PNECs was developed for evaluation of effects following long-term exposures. A second set was derived for short-term exposures. Both sets of PNECs are expressed as a 17β-estradiol equivalent (E2-eq), with 2 and 5 ng/L being considered the most likely levels above which fish reproduction may be harmed following long-term and short-term exposures, respectively. A geographic information system-based water quality model, Pharmaceutical Assessment and Transport Evaluation (PhATE™), was used to compare these PNECs to mean and low flow concentrations of the steroid estrogens across 12 U.S. watersheds. These watersheds represent approximately 19% of the surface area of the 48 North American states, contain 40 million people, and include over 44,000 kilometers of rivers. This analysis determined that only 0.8% of the segments (less than 1.1% of kilometers) of these watersheds would have a mean flow E2-eq concentration exceeding the long-term PNEC of 2.0 ng/L; only 0.5% of the segments (less than 0.8% of kilometers) would have a critical low flow E2-eq exceeding the short-term PNEC of 5 ng/L. Those few river segments where the PNECs were exceeded were effluent dominated, being either headwater streams with a publicly owned treatment works (POTW), or flowing through a highly urbanized environment with one or several POTWs. These results suggest that aquatic species in most U.S. surface waters are not at risk from steroid estrogens that may be present as a result of human releases.


Environmental Toxicology and Chemistry | 2016

Use of acute and chronic ecotoxicity data in environmental risk assessment of pharmaceuticals

Jessica Vestel; Daniel J. Caldwell; Lisa A. Constantine; Vincent J. D'Aco; Todd Davidson; David G. Dolan; Steven P. Millard; Richard Murray-Smith; Neil J. Parke; Jim J. Ryan; Jürg Oliver Straub; Peter Wilson

For many older pharmaceuticals, chronic aquatic toxicity data are limited. To assess risk during development, scale-up, and manufacturing processes, acute data and physicochemical properties need to be leveraged to reduce potential long-term impacts to the environment. Aquatic toxicity data were pooled from daphnid, fish, and algae studies for 102 active pharmaceutical ingredients (APIs) to evaluate the relationship between predicted no-effect concentrations (PNECs) derived from acute and chronic tests. The relationships between acute and chronic aquatic toxicity and the n-octanol/water distribution coefficient (D(OW)) were also characterized. Statistically significant but weak correlations were observed between toxicity and log D(OW), indicating that D(OW) is not the only contributor to toxicity. Both acute and chronic PNEC values could be calculated for 60 of the 102 APIs. For most compounds, PNECs derived from acute data were lower than PNECs derived from chronic data, with the exception of steroid estrogens. Seven percent of the PNECs derived from acute data were below the European Union action limit of 0.01 μg/L and all were anti-infectives affecting algal species. Eight percent of available PNECs derived from chronic data were below the European Union action limit, and fish were the most sensitive species for all but 1 API. These analyses suggest that the use of acute data may be acceptable if chronic data are unavailable, unless specific mode of action concerns suggest otherwise.


Journal of Occupational and Environmental Hygiene | 2005

Occupational Exposure Limits: An Approach and Calculation Aid for Extended Work Schedule Adjustments

Thomas W. Armstrong; Daniel J. Caldwell; Dave K. Verma

Past reviews of occupational exposure limit (OEL) adjustments have covered both decision logic and calculation methods to derive factors to assure protection of workers on extended (also known as unusual) work shifts. The approaches reviewed included several Habers rule based methods, several variants of single compartment toxicokinetic (TK) models, and physiologically based pharmacokinetic modeling. These models calculate OEL adjustment factors based on the work shift and the uptake and elimination of the toxicant. A key parameter of the TK models is the biologic half-life of the toxicant, but reliable data for the half-life are not available for all substances of concern. A spreadsheet is presented that implements TK calculations, with one of the presented TK calculation alternatives not dependent on half-life data. This half-life data independent approach is suggested as a viable option for situations when the toxicants half-life is unknown or uncertain.


Chemosphere | 2019

In vitro estrogenic activity of representative endocrine disrupting chemicals mixtures at environmentally relevant concentrations

Hui Yu; Daniel J. Caldwell; Rominder P.S. Suri

Exposure to mixtures of endocrine disrupting compounds (EDCs) has been hypothesized to produce potential synergistic or antagonistic effects that can cause undesired effects that are not reflected by the individual compounds. In this study, the estrogenic activities of 11 EDCs of global environmental concern were systematically investigated using the yeast estrogen screen (YES). The contribution of the individual chemical to the total endocrine activity of environmentally relevant mixtures was evaluated. Compared to 17β-estradiol (E2) as a standard, estrone (E1), estriol (E3), ethinyl estradiol (EE2), bisphenol-A (BPA), and genistein (GEN) showed estrogenic effects, while dibutyl phthalate (DBP), n-butyl benzyl phthalate (BBP), Bis(2-ethylhexyl) phthalate (DEHP), nonyl phenol (NP) and 4-tert-octyl phenol (OP) showed anti-estrogenic effects. The 11 EDCs mixture at a constant environmentally relevant ratio also showed estrogenic activity. The mixtures data were fit to concentration addition (CA), response addition (RA) and interaction (IR) models, respectively. The IR model was not statistically different from the observed value and better predicted results than the CA model for mixtures of all 11 compounds. For the mixtures with the 6 estrogenic compounds only, additive effects were observed, and the data were well predicted by the CA and IR models. Further, in the 11 EDCs mixture the presence of EE2 at an environmentally relevant concentration did not increase the estrogenic activity as compared to a 10 EDCs mixture without EE2.


Chemosphere | 2018

Environmental risk assessment of metformin and its transformation product guanylurea: II. Occurrence in surface waters of Europe and the United States and derivation of predicted no-effect concentrations

Daniel J. Caldwell; Vincent J. D'Aco; Todd Davidson; Kelly Kappler; Richard Murray-Smith; Stewart F. Owen; Paul F. Robinson; Brigitte Simon-Hettich; Jürg Oliver Straub; Joan Tell

Metformin (MET), CAS 1115-70-4 (Metformin hydrochloride), is an antidiabetic drug with high usage in North America and Europe and has become the subject of regulatory interest. A pharmaceutical industry working group investigated environmental risks of MET. Environmental fate and chronic effects data were collated across the industry for the present risk assessment. Predicted environmental concentrations (PECs) for MET were modeled for the USA and Europe using the PhATE and GREAT-ER models, respectively. PECs were compared with measured environmental concentrations (MECs) for the USA and Europe. A predicted no effect concentration (PNEC) of 1 mg/L for MET was derived by deterministic procedures, applying an assessment factor of 10 to the lowest no observed effect concentration (i.e., 10 mg/L) from multiple chronic studies with algae, daphnids and fish. The PEC/PNEC and MEC/PNEC risk characterization ratios were <1, indicating no significant risk for MET with high Margins of Safety (MOS) of >868. MET is known to degrade during wastewater treatment to guanylurea (GUU, CAS 141-83-3), which we have shown to further degrade. There are no GUU toxicity data in the literature; hence, chronic studies for GUU were conducted to derive a PNEC of 0.16 mg/L. PECs were derived for GUU as for MET, plus MECs were retrieved from the literature. The PEC/PNEC and MEC/PNEC risk characterization ratios for GUU were also <1, with an MOS of >6.5. Based on standard risk assessment procedures for both MET and its transformation product GUU, there is no significant risk to aquatic life.


Chemosphere | 2018

Environmental risk assessment of metformin and its transformation product guanylurea. I. Environmental fate

Jürg Oliver Straub; Daniel J. Caldwell; Todd Davidson; Vincent J. D'Aco; Kelly Kappler; Paul F. Robinson; Brigitte Simon-Hettich; Joan Tell

Metformin (MET) is a pharmaceutical with very high use worldwide that is excreted in unchanged form, leading to concern about potential aquatic life impacts associated with MET, and its primary transformation product guanylurea (GUU). This study presents, in two companion papers, a risk assessment following internationally accepted guidelines of MET and GUU in surface water based on literature data, previously unpublished studies, and a new degradation test that resolves conflicting earlier results. Previous studies have shown that MET is removed during sewage treatment, primarily through transformation to GUU. In addition, measurements in WWTPs suggest that MET is not only transformed to GUU, but that GUU is further biodegraded. A prolonged inherent biodegradation test strongly suggests not only primary transformation of MET to GUU, but also subsequent full mineralization of GUU, with both degradation phases starting after a clear lag phase. MET may partition from surface water to sediment, where both transformation to GUU and in part mineralization is possible, depending on the presence of competent degrading microorganisms. In addition, MET may form non-extractable residues in sediments (12.8-73.5%). Both MET and GUU may be anaerobically degraded during sludge digestion, in soils or in sediments. Bioconcentration factor (BCF) values in crops and most plants are close to 1 suggesting low bioaccumulation potential, moreover, at least some plants can metabolize MET to GUU; however, in aquatic plants higher BCFs were found, up to 53. Similarly, neither MET nor GUU are expected to bioaccumulate in fish based on estimated values of BCFs ≤3.16.

Collaboration


Dive into the Daniel J. Caldwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge