Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Fazakerley is active.

Publication


Featured researches published by Daniel J. Fazakerley.


Cell Metabolism | 2013

Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2.

Sean J. Humphrey; Guang Yang; Pengyi Yang; Daniel J. Fazakerley; Jacqueline Stöckli; Jean Y. Yang; David E. James

Summary A major challenge of the post-genomics era is to define the connectivity of protein phosphorylation networks. Here, we quantitatively delineate the insulin signaling network in adipocytes by high-resolution mass spectrometry-based proteomics. These data reveal the complexity of intracellular protein phosphorylation. We identified 37,248 phosphorylation sites on 5,705 proteins in this single-cell type, with approximately 15% responding to insulin. We integrated these large-scale phosphoproteomics data using a machine learning approach to predict physiological substrates of several diverse insulin-regulated kinases. This led to the identification of an Akt substrate, SIN1, a core component of the mTORC2 complex. The phosphorylation of SIN1 by Akt was found to regulate mTORC2 activity in response to growth factors, revealing topological insights into the Akt/mTOR signaling network. The dynamic phosphoproteome described here contains numerous phosphorylation sites on proteins involved in diverse molecular functions and should serve as a useful functional resource for cell biologists.


Traffic | 2011

Mapping Insulin/GLUT4 Circuitry

Alexander F. Rowland; Daniel J. Fazakerley; David E. James

One of the most important metabolic actions of insulin is catalysing glucose uptake into skeletal muscle and adipose tissue. This is accomplished via activation of the phosphatidylinositol‐3‐kinase/Akt signalling pathway and subsequent translocation of GLUT4 from intracellular storage vesicles to the plasma membrane. As such, this represents an ideal system for studying the convergence of signal transduction and protein trafficking. The GLUT4 translocation process is complex, but can be dissected into at least four discrete trafficking steps. This raises the question as to which of these is the major regulated step in insulin‐stimulated GLUT4 translocation. Numerous molecules have been reported to regulate GLUT4 trafficking. However, with the exception of TBC1D4, the molecular details of these distal signalling arms of the insulin signalling network and how they modify distinct steps of GLUT4 trafficking have not been established. We discuss the need to adopt a more global approach to expand and deepen our understanding of the molecular processes underpinning this system. Strategies that facilitate the generation of detailed models of the entire insulin signalling network will enable us to identify the critical nodes that control GLUT4 traffic and decipher emergent properties of the system that are not currently apparent.


Journal of Biological Chemistry | 2012

Amplification and Demultiplexing in Insulin-regulated Akt Protein Kinase Pathway in Adipocytes

Shi-Xiong Tan; Yvonne Ng; Christopher C. Meoli; Ansu Kumar; Poh-Sim Khoo; Daniel J. Fazakerley; Jagath R. Junutula; Shireen Vali; David E. James; Jacqueline Stöckli

Background: Akt plays a major role in insulin regulation of metabolism. Results: Akt operates at 5–22% of its dynamic range. This lacks concordance with Akt substrate phosphorylation, GLUT4 translocation, and protein synthesis. Conclusion: Akt is a demultiplexer that splits the insulin signal into discrete outputs. Significance: This study provides better understanding of the Akt pathway and has implications for the role of Akt in diseases. Akt plays a major role in insulin regulation of metabolism in muscle, fat, and liver. Here, we show that in 3T3-L1 adipocytes, Akt operates optimally over a limited dynamic range. This indicates that Akt is a highly sensitive amplification step in the pathway. With robust insulin stimulation, substantial changes in Akt phosphorylation using either pharmacologic or genetic manipulations had relatively little effect on Akt activity. By integrating these data we observed that half-maximal Akt activity was achieved at a threshold level of Akt phosphorylation corresponding to 5–22% of its full dynamic range. This behavior was also associated with lack of concordance or demultiplexing in the behavior of downstream components. Most notably, FoxO1 phosphorylation was more sensitive to insulin and did not exhibit a change in its rate of phosphorylation between 1 and 100 nm insulin compared with other substrates (AS160, TSC2, GSK3). Similar differences were observed between various insulin-regulated pathways such as GLUT4 translocation and protein synthesis. These data indicate that Akt itself is a major amplification switch in the insulin signaling pathway and that features of the pathway enable the insulin signal to be split or demultiplexed into discrete outputs. This has important implications for the role of this pathway in disease.


Molecular metabolism | 2014

Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle.

Evan P. Taddeo; Rhianna C. Laker; David S. Breen; Yasir N. Akhtar; Brandon M. Kenwood; Jason A. Liao; Mei Zhang; Daniel J. Fazakerley; Jose L. Tomsig; Thurl E. Harris; Susanna R. Keller; Jenny D.Y. Chow; Kevin R. Lynch; M. Chokki; J.D. Molkentin; Nigel Turner; David E. James; Zhen Yan; Kyle L. Hoehn

Insulin resistance is associated with mitochondrial dysfunction, but the mechanism by which mitochondria inhibit insulin-stimulated glucose uptake into the cytoplasm is unclear. The mitochondrial permeability transition pore (mPTP) is a protein complex that facilitates the exchange of molecules between the mitochondrial matrix and cytoplasm, and opening of the mPTP occurs in response to physiological stressors that are associated with insulin resistance. In this study, we investigated whether mPTP opening provides a link between mitochondrial dysfunction and insulin resistance by inhibiting the mPTP gatekeeper protein cyclophilin D (CypD) in vivo and in vitro. Mice lacking CypD were protected from high fat diet-induced glucose intolerance due to increased glucose uptake in skeletal muscle. The mitochondria in CypD knockout muscle were resistant to diet-induced swelling and had improved calcium retention capacity compared to controls; however, no changes were observed in muscle oxidative damage, insulin signaling, lipotoxic lipid accumulation or mitochondrial bioenergetics. In vitro, we tested 4 models of insulin resistance that are linked to mitochondrial dysfunction in cultured skeletal muscle cells including antimycin A, C2-ceramide, ferutinin, and palmitate. In all models, we observed that pharmacological inhibition of mPTP opening with the CypD inhibitor cyclosporin A was sufficient to prevent insulin resistance at the level of insulin-stimulated GLUT4 translocation to the plasma membrane. The protective effects of mPTP inhibition on insulin sensitivity were associated with improved mitochondrial calcium retention capacity but did not involve changes in insulin signaling both in vitro and in vivo. In sum, these data place the mPTP at a critical intersection between alterations in mitochondrial function and insulin resistance in skeletal muscle.


Journal of Biological Chemistry | 2010

Kinetic Evidence for Unique Regulation of GLUT4 Trafficking by Insulin and AMP-activated Protein Kinase Activators in L6 Myotubes

Daniel J. Fazakerley; Geoffrey D. Holman; Anna Marley; David E. James; Jacqueline Stöckli; Adelle C. F. Coster

In L6 myotubes, redistribution of a hemagglutinin (HA) epitope-tagged GLUT4 (HA-GLUT4) to the cell surface occurs rapidly in response to insulin stimulation and AMP-activated protein kinase (AMPK) activation. We have examined whether these separate signaling pathways have a convergent mechanism that leads to GLUT4 mobilization and to changes in GLUT4 recycling. HA antibody uptake on GLUT4 in the basal steady state reached a final equilibrium level that was only 81% of the insulin-stimulated level. AMPK activators (5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and A-769662) led to a similar level of antibody uptake to that found in insulin-stimulated cells. However, the combined responses to insulin stimulation and AMPK activation led to an antibody uptake level of ∼20% above the insulin level. Increases in antibody uptake due to insulin, but not AICAR or A-769662, treatment were reduced by both wortmannin and Akt inhibitor. The GLUT4 internalization rate constant in the basal steady state was very rapid (0.43 min−1) and was decreased during the steady-state responses to insulin (0.18 min−1), AICAR (0.16 min−1), and A-769662 (0.24 min−1). This study has revealed a nonconvergent mobilization of GLUT4 in response to activation of Akt and AMPK signaling. Furthermore, GLUT4 trafficking in L6 muscle cells is very reliant on regulated endocytosis for control of cell surface GLUT4 levels.


Cancer and Metabolism | 2017

Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration

Seher Balaban; Robert F. Shearer; Lisa S. Lee; Michelle van Geldermalsen; Mark Schreuder; Harrison C. Shtein; Rose Cairns; Kristen C. Thomas; Daniel J. Fazakerley; Thomas Grewal; Jeff Holst; Darren N. Saunders; Andrew J. Hoy

BackgroundObesity is associated with increased recurrence and reduced survival of breast cancer. Adipocytes constitute a significant component of breast tissue, yet their role in provisioning metabolic substrates to support breast cancer progression is poorly understood.ResultsHere, we show that co-culture of breast cancer cells with adipocytes revealed cancer cell-stimulated depletion of adipocyte triacylglycerol. Adipocyte-derived free fatty acids were transferred to breast cancer cells, driving fatty acid metabolism via increased CPT1A and electron transport chain complex protein levels, resulting in increased proliferation and migration. Notably, fatty acid transfer to breast cancer cells was enhanced from “obese” adipocytes, concomitant with increased stimulation of cancer cell proliferation and migration. This adipocyte-stimulated breast cancer cell proliferation was dependent on lipolytic processes since HSL/ATGL knockdown attenuated cancer cell responses.ConclusionsThese findings highlight a novel and potentially important role for adipocyte lipolysis in the provision of metabolic substrates to breast cancer cells, thereby supporting cancer progression.


Journal of Biological Chemistry | 2015

Selective Insulin Resistance in Adipocytes

Shi-Xiong Tan; Kelsey H. Fisher-Wellman; Daniel J. Fazakerley; Yvonne Ng; Himani Pant; Jia Li; Christopher C. Meoli; Adelle C. F. Coster; Jacqueline Stöckli; David E. James

Background: Insulin resistance is an early risk factor for metabolic disease. Results: Using various insulin resistance models, insulin regulation of glucose metabolism was universally blunted, whereas other actions (protein synthesis and anti-lipolysis) were unimpaired. Conclusion: Insulin resistance is selective for glucose metabolism in adipocytes. Significance: Chronic hyperactivation of unaffected insulin action pathways in the context of the metabolic syndrome likely contributes to disease progression. Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin.


Diabetes | 2015

The RabGAP TBC1D1 Plays a Central Role in Exercise-Regulated Glucose Metabolism in Skeletal Muscle

Jacqueline Stöckli; Christopher C. Meoli; Nolan J. Hoffman; Daniel J. Fazakerley; Himani Pant; Mark E. Cleasby; Xiuquan Ma; Maximilian Kleinert; Amanda E. Brandon; Jamie A. Lopez; Gregory J. Cooney; David E. James

Insulin and exercise stimulate glucose uptake into skeletal muscle via different pathways. Both stimuli converge on the translocation of the glucose transporter GLUT4 from intracellular vesicles to the cell surface. Two Rab guanosine triphosphatases-activating proteins (GAPs) have been implicated in this process: AS160 for insulin stimulation and its homolog, TBC1D1, are suggested to regulate exercise-mediated glucose uptake into muscle. TBC1D1 has also been implicated in obesity in humans and mice. We investigated the role of TBC1D1 in glucose metabolism by generating TBC1D1−/− mice and analyzing body weight, insulin action, and exercise. TBC1D1−/− mice showed normal glucose and insulin tolerance, with no difference in body weight compared with wild-type littermates. GLUT4 protein levels were reduced by ∼40% in white TBC1D1−/− muscle, and TBC1D1−/− mice showed impaired exercise endurance together with impaired exercise-mediated 2-deoxyglucose uptake into white but not red muscles. These findings indicate that the RabGAP TBC1D1 plays a key role in regulating GLUT4 protein levels and in exercise-mediated glucose uptake in nonoxidative muscle fibers.


Molecular metabolism | 2014

Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity

Lindsay E. Wu; Dorit Samocha-Bonet; P. Tess Whitworth; Daniel J. Fazakerley; Nigel Turner; Trevor J. Biden; David E. James; James Cantley

A critical feature of obesity is enhanced insulin secretion from pancreatic β-cells, enabling the majority of individuals to maintain glycaemic control despite adiposity and insulin resistance. Surprisingly, the factors coordinating this adaptive β-cell response with adiposity have not been delineated. Here we show that fatty acid binding protein 4 (FABP4/aP2) is an adipokine released from adipocytes under obesogenic conditions, such as hypoxia, to augment insulin secretion. The insulinotropic action of FABP4 was identified using an in vitro system that recapitulates adipocyte to β-cell endocrine signalling, with glucose-stimulated insulin secretion (GSIS) as a functional readout, coupled with quantitative proteomics. Exogenous FABP4 potentiated GSIS in vitro and in vivo, and circulating FABP4 levels correlated with GSIS in humans. Insulin inhibited FABP4 release from adipocytes in vitro, in mice and in humans, consistent with feedback regulation. These data suggest that FABP4 and insulin form an endocrine loop coordinating the β-cell response to obesity.


Molecular & Cellular Proteomics | 2016

Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes

Benjamin L. Parker; Morten Thaysen-Andersen; Daniel J. Fazakerley; Mira Holliday; Nicolle H. Packer; David E. James

Insulin resistance (IR) is a complex pathophysiological state that arises from both environmental and genetic perturbations and leads to a variety of diseases, including type-2 diabetes (T2D). Obesity is associated with enhanced adipose tissue inflammation, which may play a role in disease progression. Inflammation modulates protein glycosylation in a variety of cell types, and this has been associated with biological dysregulation. Here, we have examined the effects of an inflammatory insult on protein glycosylation in adipocytes. We performed quantitative N-glycome profiling of membrane proteins derived from mouse 3T3-L1 adipocytes that had been incubated with or without the proinflammatory cytokine TNF-alpha to induce IR. We identified the regulation of specific terminal N-glycan epitopes, including an increase in terminal di-galactose- and a decrease in biantennary alpha-2,3-sialoglycans. The altered N-glycosylation of TNF-alpha-treated adipocytes correlated with the regulation of specific glycosyltransferases, including the up-regulation of B4GalT5 and Ggta1 galactosyltransferases and down-regulation of ST3Gal6 sialyltransferase. Knockdown of B4GalT5 down-regulated the terminal di-galactose N-glycans, confirming the involvement of this enzyme in the TNF-alpha-regulated N-glycome. SILAC-based quantitative glycoproteomics of enriched N-glycopeptides with and without deglycosylation were used to identify the protein and glycosylation sites modified with these regulated N-glycans. The combined proteome and glycoproteome workflow provided a relative quantification of changes in protein abundance versus N-glycosylation occupancy versus site-specific N-glycans on a proteome-wide level. This revealed the modulation of N-glycosylation on specific proteins in IR, including those previously associated with insulin-stimulated GLUT4 trafficking to the plasma membrane.

Collaboration


Dive into the Daniel J. Fazakerley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Burchfield

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher C. Meoli

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge