Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James R. Krycer is active.

Publication


Featured researches published by James R. Krycer.


Journal of Biological Chemistry | 2011

Cross-talk between the Androgen Receptor and the Liver X Receptor IMPLICATIONS FOR CHOLESTEROL HOMEOSTASIS

James R. Krycer; Andrew J. Brown

High cholesterol levels are associated with prostate cancer development. Androgens promote cholesterol accumulation by activating the sterol-regulatory element-binding protein isoform 2 (SREBP-2) transcription factor. However, SREBP-2 is in balance with the liver X receptor (LXR; NR1H2/NR1H3), a transcription factor that prevents cholesterol accumulation. Here, we show that LXR activity is down-regulated by the androgen receptor (AR; NR3C4). In turn, this reduces LXR target gene expression. This antagonism on LXR is also exerted by other steroid hormone receptors, including the estrogen, glucocorticoid, and progesterone receptors. This suggests a generalizable mechanism, but the AR does not affect LXR mRNA levels, protein degradation, or DNA binding. We also found that the AR does not require protein synthesis to influence LXR, suggesting a direct antagonism. However, the AR does not directly bind LXR. The AR N-terminal domain (involved in transactivation), but not its DNA-binding domain, is required to suppress LXR activity, suggesting coactivator competition. Overall, this androgen-mediated antagonism of LXR complements SREBP-2 activation, providing a more complete picture as to how androgens increase cellular cholesterol levels in a prostate cancer setting. Given the cross-talk between other steroid hormone receptors and LXR, hormonal regulation of cholesterol via LXR may occur in a variety of cellular contexts.


Cell Metabolism | 2016

Defining the Nutritional and Metabolic Context of FGF21 Using the Geometric Framework

Samantha M. Solon-Biet; Victoria C. Cogger; Tamara Pulpitel; Marika Heblinski; Devin Wahl; Aisling C. McMahon; Alessandra Warren; Jessica Durrant-Whyte; Kirsty A. Walters; James R. Krycer; Fleur Ponton; Rahul Gokarn; Jibran A. Wali; Kari Ruohonen; Arthur D. Conigrave; David E. James; David Raubenheimer; Christopher D. Morrison; David G. Le Couteur; Stephen J. Simpson

Fibroblast growth factor 21 (FGF21) is the first known endocrine signal activated by protein restriction. Although FGF21 is robustly elevated in low-protein environments, increased FGF21 is also seen in various other contexts such as fasting, overfeeding, ketogenic diets, and high-carbohydrate diets, leaving its nutritional context and physiological role unresolved and controversial. Here, we use the Geometric Framework, a nutritional modeling platform, to help reconcile these apparently conflicting findings in mice confined to one of 25 diets that varied in protein, carbohydrate, and fat content. We show that FGF21 was elevated under low protein intakes and maximally when low protein was coupled with high carbohydrate intakes. Our results explain how elevation of FGF21 occurs both under starvation and hyperphagia, and show that the metabolic outcomes associated with elevated FGF21 depend on the nutritional context, differing according to whether the animal is in a state of under- or overfeeding.


PLOS ONE | 2009

Cholesterol Homeostasis in Two Commonly Used Human Prostate Cancer Cell-Lines, LNCaP and PC-3

James R. Krycer; Ika Kristiana; Andrew J. Brown

Background Recently, there has been renewed interest in the link between cholesterol and prostate cancer. It has been previously reported that in vitro, prostate cancer cells lack sterol-mediated feedback regulation of the major transcription factor in cholesterol homeostasis, sterol-regulatory element binding protein 2 (SREBP-2). This could explain the accumulation of cholesterol observed in clinical prostate cancers. Consequently, perturbed feedback regulation to increased sterol levels has become a pervasive concept in the prostate cancer setting. Here, we aimed to explore this in greater depth. Methodology/Principal Findings After altering the cellular cholesterol status in LNCaP and PC-3 prostate cancer cells, we examined SREBP-2 processing, downstream effects on promoter activity and expression of SREBP-2 target genes, and functional activity (low-density lipoprotein uptake, cholesterol synthesis). In doing so, we observed that LNCaP and PC-3 cells were sensitive to increased sterol levels. In contrast, lowering cholesterol levels via statin treatment generated a greater response in LNCaP cells than PC-3 cells. This highlighted an important difference between these cell-lines: basal SREBP-2 activity appeared to be higher in PC-3 cells, reducing sensitivity to decreased cholesterol levels. Conclusion/Significance Thus, prostate cancer cells are sensitive to changing sterol levels in vitro, but the extent of this regulation differs between prostate cancer cell-lines. These results shed new light on the regulation of cholesterol metabolism in two commonly used prostate cancer cell-lines, and emphasize the importance of establishing whether or not cholesterol homeostasis is perturbed in prostate cancer in vivo.


PLOS ONE | 2013

A Practical Comparison of Ligation-Independent Cloning Techniques

Julian Stevenson; James R. Krycer; Lisa Phan; Andrew J. Brown

The precise assembly of specific DNA sequences is a critical technique in molecular biology. Traditional cloning techniques use restriction enzymes and ligation of DNA in vitro, which can be hampered by a lack of appropriate restriction-sites and inefficient enzymatic steps. A number of ligation-independent cloning techniques have been developed, including polymerase incomplete primer extension (PIPE) cloning, sequence and ligation-independent cloning (SLIC), and overlap extension cloning (OEC). These strategies rely on the generation of complementary overhangs by DNA polymerase, without requiring specific restriction sites or ligation, and achieve high efficiencies in a fraction of the time at low cost. Here, we outline and optimise these techniques and identify important factors to guide cloning project design, including avoiding PCR artefacts such as primer-dimers and vector plasmid background. Experiments made use of a common reporter vector and a set of modular primers to clone DNA fragments of increasing size. Overall, PIPE achieved cloning efficiencies of ∼95% with few manipulations, whereas SLIC provided a much higher number of transformants, but required additional steps. Our data suggest that for small inserts (<1.5 kb), OEC is a good option, requiring only two new primers, but performs poorly for larger inserts. These ligation-independent cloning approaches constitute an essential part of the researchers molecular-tool kit.


Proteomics | 2008

Are protein complexes made of cores, modules and attachments?

Chi Nam Ignatius Pang; James R. Krycer; Angela Lek; Marc R. Wilkins

It has recently been proposed by Gavin et al. (Nature 2006, 440, 631–636) that protein complexes in the cell exist in different forms. The proteins within each complex were proposed to exist as three different classes, being core, module or attachment proteins. This study investigates whether the core–module–attachment classification of proteins within each complex is supported by other high‐throughput protein data. Core proteins were found to have lower abundance, and shorter half‐life as compared to attachment proteins, whilst the abundance and half‐life of core and module proteins were similar. When the cell was perturbed, core proteins had smaller changes in abundance as compared to module and attachment proteins. Comparisons between six different pairwise interaction types of core, module and attachment proteins within a complex showed interaction types involving core or module proteins were more likely to be mediated by domain–domain interactions (DDIs) than interaction types involving attachment proteins. Interaction types that involve attachment proteins had a relatively higher ratio of abundance and ratio of half‐life. So we conclude that, the core, module and attachment model of protein complexes is supported by data from these proteomic scale datasets, and describe a model for a typical protein complex that considers the above results.


Molecular metabolism | 2014

Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

Maximilian Kleinert; Lykke Sylow; Daniel J. Fazakerley; James R. Krycer; Kristen C. Thomas; Anne-Julie Oxbøll; Andreas Børsting Jordy; Thomas E. Jensen; Guang Yang; Peter Schjerling; Bente Kiens; David E. James; Markus A. Rüegg; Erik A. Richter

The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055, but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose homeostasis in part by blocking muscle mTORC2, indicating its importance in muscle metabolism in vivo.


Molecular metabolism | 2016

mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3

Maximilian Kleinert; Benjamin L. Parker; Rima Chaudhuri; Daniel J. Fazakerley; Annette Karen Serup; Kristen C. Thomas; James R. Krycer; Lykke Sylow; Andreas M. Fritzen; Nolan J. Hoffman; Jacob Jeppesen; Peter Schjerling; Markus A. Rüegg; Bente Kiens; David E. James; Erik A. Richter

Objective We have recently shown that acute inhibition of both mTOR complexes (mTORC1 and mTORC2) increases whole-body lipid utilization, while mTORC1 inhibition had no effect. Therefore, we tested the hypothesis that mTORC2 regulates lipid metabolism in skeletal muscle. Methods Body composition, substrate utilization and muscle lipid storage were measured in mice lacking mTORC2 activity in skeletal muscle (specific knockout of RICTOR (Ric mKO)). We further examined the RICTOR/mTORC2-controlled muscle metabolome and proteome; and performed follow-up studies in other genetic mouse models and in cell culture. Results Ric mKO mice exhibited a greater reliance on fat as an energy substrate, a re-partitioning of lean to fat mass and an increase in intramyocellular triglyceride (IMTG) content, along with increases in several lipid metabolites in muscle. Unbiased proteomics revealed an increase in the expression of the lipid droplet binding protein Perilipin 3 (PLIN3) in muscle from Ric mKO mice. This was associated with increased AMPK activity in Ric mKO muscle. Reducing AMPK kinase activity decreased muscle PLIN3 expression and IMTG content. AMPK agonism, in turn, increased PLIN3 expression in a FoxO1 dependent manner. PLIN3 overexpression was sufficient to increase triglyceride content in muscle cells. Conclusions We identified a novel link between mTORC2 and PLIN3, which regulates lipid storage in muscle. While mTORC2 is a negative regulator, we further identified AMPK as a positive regulator of PLIN3, which impacts whole-body substrate utilization and nutrient partitioning.


PLOS ONE | 2014

The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action

Rachael Fletcher; Christopher Gribben; Xuiquan Ma; James G. Burchfield; Kristen C. Thomas; James R. Krycer; David E. James; Daniel J. Fazakerley

The Niemann-Pick disease, type C1 (NPC1) gene encodes a transmembrane protein involved in cholesterol efflux from the lysosome. SNPs within NPC1 have been associated with obesity and type 2 diabetes, and mice heterozygous or null for NPC1 are insulin resistant. However, the molecular mechanism underpinning this association is currently undefined. This study aimed to investigate the effects of inhibiting NPC1 function on insulin action in adipocytes. Both pharmacological and genetic inhibition of NPC1 impaired insulin action. This impairment was evident at the level of insulin signalling and insulin-mediated glucose transport in the short term and decreased GLUT4 expression due to reduced liver X receptor (LXR) transcriptional activity in the long-term. These data show that cholesterol homeostasis through NPC1 plays a crucial role in maintaining insulin action at multiple levels in adipocytes.


PLOS ONE | 2013

Does Changing Androgen Receptor Status during Prostate Cancer Development Impact upon Cholesterol Homeostasis

James R. Krycer; Andrew J. Brown

Background Recent evidence associates prostate cancer with high cholesterol levels, with cholesterol being an important raw material for cell-growth. Within the cell, cholesterol homeostasis is maintained by two master transcription factors: sterol-regulatory element-binding protein 2 (SREBP-2) and liver X receptor (LXR). We previously showed that the androgen receptor, a major player in prostate cell physiology, toggles these transcription factors to promote cholesterol accumulation. Given that prostate cancer therapy targets the androgen receptor, selecting for cells with altered androgen receptor activity, how would this affect SREBP-2 and LXR activity? Using a novel prostate cancer progression model, we explored how this crosstalk between the androgen receptor and cholesterol homeostasis changes during prostate cancer development. Methodology/Principal Findings Firstly, we characterised our progression model, which involved 1) culturing LNCaP cells at physiological testosterone levels to generate androgen-tolerant LNCaP-305 cells, and 2) culturing LNCaP-305 with the anti-androgen casodex to generate castration-resistant LNCaP-364 cells. This progression was accompanied by upregulated androgen receptor expression, typically seen clinically, and a reduction in androgen receptor activity. Although this influenced how SREBP-2 and LXR target genes responded to androgen treatment, cellular cholesterol levels and their response to changing sterol status was similar in all LNCaP sub-lines. Conclusion/Significance Overall cholesterol homeostasis is unaffected by changing androgen receptor activity in prostate cancer cells. This does not negate the relationship between androgens and cholesterol homeostasis, but rather suggests that other factors compensate for altered androgen receptor activity. Given that cholesterol regulation is maintained during progression, this supports the growing idea that cholesterol metabolism is a suitable target for prostate cancer.


Nature Communications | 2016

14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function

Simone M. Schoenwaelder; Roxane Darbousset; Susan L. Cranmer; Hayley S. Ramshaw; Stephanie Orive; Sharelle A. Sturgeon; Yuping Yuan; Yu Yao; James R. Krycer; Joanna M. Woodcock; Jessica Maclean; Stuart M. Pitson; Zhaohua Zheng; Darren C. Henstridge; Dianne E. van der Wal; Elizabeth E. Gardiner; Michael C. Berndt; Robert K. Andrews; David E. James; Angel F. Lopez; Shaun P. Jackson

The 14-3-3 family of adaptor proteins regulate diverse cellular functions including cell proliferation, metabolism, adhesion and apoptosis. Platelets express numerous 14-3-3 isoforms, including 14-3-3ζ, which has previously been implicated in regulating GPIbα function. Here we show an important role for 14-3-3ζ in regulating arterial thrombosis. Interestingly, this thrombosis defect is not related to alterations in von Willebrand factor (VWF)–GPIb adhesive function or platelet activation, but instead associated with reduced platelet phosphatidylserine (PS) exposure and procoagulant function. Decreased PS exposure in 14-3-3ζ-deficient platelets is associated with more sustained levels of metabolic ATP and increased mitochondrial respiratory reserve, independent of alterations in cytosolic calcium flux. Reduced platelet PS exposure in 14-3-3ζ-deficient mice does not increase bleeding risk, but results in decreased thrombin generation and protection from pulmonary embolism, leading to prolonged survival. Our studies define an important role for 14-3-3ζ in regulating platelet bioenergetics, leading to decreased platelet PS exposure and procoagulant function.

Collaboration


Dive into the James R. Krycer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Brown

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

James G. Burchfield

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge