Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Inman is active.

Publication


Featured researches published by Daniel J. Inman.


The Shock and Vibration Digest | 2004

A Review of Power Harvesting from Vibration using Piezoelectric Materials

Henry A. Sodano; Daniel J. Inman; Gyuhae Park

The process of acquiring the energy surrounding a system and converting it into usable electrical energy is termed power harvesting. In the last few years, there has been a surge of research in the area of power harvesting. This increase in research has been brought on by the modern advances in wireless technology and low-power electronics such as microelectromechanical systems. The advances have allowed numerous doors to open for power harvesting systems in practical real-world applications. The use of piezoelectric materials to capitalize on the ambient vibrations surrounding a system is one method that has seen a dramatic rise in use for power harvesting. Piezoelectric materials have a crystalline structure that provides them with the ability to transform mechanical strain energy into electrical charge and, vice versa, to convert an applied electrical potential into mechanical strain. This property provides these materials with the ability to absorb mechanical energy from their surroundings, usually ambient vibration, and transform it into electrical energy that can be used to power other devices. While piezoelectric materials are the major method of harvesting energy, other methods do exist; for example, one of the conventional methods is the use of electromagnetic devices. In this paper we discuss the research that has been performed in the area of power harvesting, and the future goals that must be achieved for power harvesting systems to find their way into everyday use.


Springer US | 2008

Energy Harvesting Technologies

Shashank Priya; Daniel J. Inman

Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.


Smart Materials and Structures | 2009

An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations

Alper Erturk; Daniel J. Inman

Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh–Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler–Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance frequency excitations and the accuracy of the model is shown in all cases.


Journal of Intelligent Material Systems and Structures | 1992

A self-sensing piezoelectric actuator for collocated control

Jeffrey J. Dosch; Daniel J. Inman; Ephrahim Garcia

A technique has been developed which allows a single piece of piezoelec tric material to concurrently sense and actuate in a closed loop system. The motivation behind the technique is that such a self-sensing actuator will be truly collocated and has applications in active and intelligent structures, such as vibration suppression. A theoreti cal basis for the self-sensing actuator is given in terms of the electromechanical consti tutive equations for a piezoelectric material. In a practical implementation of the self- sensing actuator an electrical bridge circuit is used to measure strain. The bridge circuit is capable of measuring either strain or time rate of strain in the actuator. The usefulness of the proposed device was experimentally verified by actively damping the vibration in a cantilever beam. A single piezoceramic element bonded to the base of the beam functioned both as a distributed moment actuator and strain sensor. Using a rate feedback control law, the first mode of vibration was suppressed, reducing the settling from 35 seconds to 2.5 seconds. Using a positive position feedback law the first two modes of vibration were suppressed; the first mode settling time was reduced from 35 to 0.3 sec onds and the second mode settling time was reduced from 7 seconds to 0.9 seconds.


Journal of Vibration and Acoustics | 2008

A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters

Alper Erturk; Daniel J. Inman

Cantilevered beams with piezoceramic layers have been frequently used as piezoelectric vibration energy harvesters in the past five years. The literature includes several single degree-of-freedom models, a few approximate distributed parameter models and even some incorrect approaches for predicting the electromechanical behavior of these harvesters. In this paper, we present the exact analytical solution of a cantilevered piezoelectric energy harvester with Euler–Bernoulli beam assumptions. The excitation of the harvester is assumed to be due to its base motion in the form of translation in the transverse direction with small rotation, and it is not restricted to be harmonic in time. The resulting expressions for the coupled mechanical response and the electrical outputs are then reduced for the particular case of harmonic behavior in time and closed-form exact expressions are obtained. Simple expressions for the coupled mechanical response, voltage, current, and power outputs are also presented for excitations around the modal frequencies. Finally, the model proposed is used in a parametric case study for a unimorph harvester, and important characteristics of the coupled distributed parameter system, such as short circuit and open circuit behaviors, are investigated in detail. Modal electromechanical coupling and dependence of the electrical outputs on the locations of the electrodes are also discussed with examples.


Applied Physics Letters | 2009

A piezomagnetoelastic structure for broadband vibration energy harvesting

Alper Erturk; J. Hoffmann; Daniel J. Inman

This letter introduces a piezomagnetoelastic device for substantial enhancement of piezoelectric power generation in vibration energy harvesting. Electromechanical equations describing the nonlinear system are given along with theoretical simulations. Experimental performance of the piezomagnetoelastic generator exhibits qualitative agreement with the theory, yielding large-amplitude periodic oscillations for excitations over a frequency range. Comparisons are presented against the conventional case without magnetic buckling and superiority of the piezomagnetoelastic structure as a broadband electric generator is proven. The piezomagnetoelastic generator results in a 200% increase in the open-circuit voltage amplitude (hence promising an 800% increase in the power amplitude).


Journal of Intelligent Material Systems and Structures | 2011

A Review of Morphing Aircraft

Silvestro Barbarino; Onur Bilgen; R.M. Ajaj; Michael I. Friswell; Daniel J. Inman

Aircraft wings are a compromise that allows the aircraft to fly at a range of flight conditions, but the performance at each condition is sub-optimal. The ability of a wing surface to change its geometry during flight has interested researchers and designers over the years as this reduces the design compromises required. Morphing is the short form for metamorphose; however, there is neither an exact definition nor an agreement between the researchers about the type or the extent of the geometrical changes necessary to qualify an aircraft for the title ‘shape morphing.’ Geometrical parameters that can be affected by morphing solutions can be categorized into: planform alteration (span, sweep, and chord), out-of-plane transformation (twist, dihedral/gull, and span-wise bending), and airfoil adjustment (camber and thickness). Changing the wing shape or geometry is not new. Historically, morphing solutions always led to penalties in terms of cost, complexity, or weight, although in certain circumstances, these were overcome by system-level benefits. The current trend for highly efficient and ‘green’ aircraft makes such compromises less acceptable, calling for innovative morphing designs able to provide more benefits and fewer drawbacks. Recent developments in ‘smart’ materials may overcome the limitations and enhance the benefits from existing design solutions. The challenge is to design a structure that is capable of withstanding the prescribed loads, but is also able to change its shape: ideally, there should be no distinction between the structure and the actuation system. The blending of morphing and smart structures in an integrated approach requires multi-disciplinary thinking from the early development, which significantly increases the overall complexity, even at the preliminary design stage. Morphing is a promising enabling technology for the future, next-generation aircraft. However, manufacturers and end users are still too skeptical of the benefits to adopt morphing in the near future. Many developed concepts have a technology readiness level that is still very low. The recent explosive growth of satellite services means that UAVs are the technology of choice for many investigations on wing morphing. This article presents a review of the state-of-the-art on morphing aircraft and focuses on structural, shape-changing morphing concepts for both fixed and rotary wings, with particular reference to active systems. Inflatable solutions have been not considered, and skin issues and challenges are not discussed in detail. Although many interesting concepts have been synthesized, few have progressed to wing tunnel testing, and even fewer have flown. Furthermore, any successful wing morphing system must overcome the weight penalty due to the additional actuation systems.


Journal of Intelligent Material Systems and Structures | 2005

Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries

Henry A. Sodano; Daniel J. Inman; Gyuhae Park

Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy that can then be stored and used to power other devices. With the recent surge of microscale devices, piezoelectric power generation can provide a convenient alternative to traditional power sources used to operate certain types of sensors/actuators, telemetry, and MEMS devices. However, the energy produced by these materials is in many cases far too small to directly power an electrical device. Therefore, much of the research into power harvesting has focused on methods of accumulating the energy until a sufficient amount is present, allowing the intended electronics to be powered. In a recent study by Sodano et al. (2004a) the ability to take the energy generated through the vibration of a piezoelectric material was shown to be capable of recharging a discharged nickel metal hydride battery. In the present study, three types of piezoelectric devices are investigated and experimentally tested to determine each of their abilities to transform ambient vibration into electrical energy and their capability to recharge a discharged battery. The three types of piezoelectric devices tested are the commonly used monolithic piezoceramic material lead–zirconate–titanate (PZT), the bimorph Quick Pack (QP) actuator, and the macro-fiber composite (MFC). The experimental results estimate the efficiency of the three devices tested and identify the feasibility of their use in practical applications. Different capacity batteries are recharged using each device, to determine the charge time and maximum capacity battery that can be charged. The results presented in this article provide a means of choosing the piezoelectric device to be used and estimate the amount of time required to recharge a specific capacity battery.


Journal of Intelligent Material Systems and Structures | 2008

On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters

Alper Erturk; Daniel J. Inman

Cantilevered beams with piezoceramic (PZT) layers are the most commonly investigated type of vibration energy harvesters. A frequently used modeling approach is the single-degree-of-freedom (SDOF) modeling of the harvester beam as it allows simple expressions for the electrical outputs. In the literature, since the base excitation on the harvester beam is assumed to be harmonic, the well known SDOF relation is employed for mathematical modeling. In this study, it is shown that the commonly accepted SDOF harmonic base excitation relation may yield highly inaccurate results for predicting the motion of cantilevered beams and bars. First, the response of a cantilevered Euler—Bernoulli beam to general base excitation given in terms of translation and small rotation is reviewed where more sophisticated damping models are considered. Then, the error in the SDOF model is shown and correction factors are derived for improving the SDOF harmonic base excitation model both for transverse and longitudinal vibrations. The formal way of treating the components of mechanical damping is also discussed. After deriving simple expressions for the electrical outputs of the PZT in open-circuit conditions, relevance of the electrical outputs to vibration mode shapes and the electrode locations is investigated and the issue of strain nodes is addressed.


Smart Materials and Structures | 2008

Issues in mathematical modeling of piezoelectric energy harvesters

Alper Erturk; Daniel J. Inman

The idea of vibration-to-electric energy conversion for powering small electronic components by using the ambient vibration energy has been investigated by researchers from different disciplines in the last decade. Among the possible transduction mechanisms, piezoelectric transduction has received the most attention for converting ambient vibrations to useful electrical energy. In the last five years, there have been a considerable number of publications using various models for the electromechanical behavior of piezoelectric energy harvester beams. The models used in the literature range from elementary single-degree-of-freedom (SDOF) models to approximate distributed parameter models as well as analytical distributed parameter solution attempts. Because of the diverse nature of researchers working in energy harvesting (including electrical, mechanical and materials engineers), several oversimplified and incorrect physical assumptions have been propagated in the literature. Issues of the correct formulation for piezoelectric coupling, correct physical modeling, use of low fidelity models, incorrect base motion modeling, and the use of static expressions in a fundamentally dynamic problem are discussed and clarified here. These common indiscretions, which have been repeated in the existing piezoelectric energy harvesting literature, are addressed and clarified with improved models, and examples are provided. This paper aims to provide corrections and necessary clarifications for researchers from different engineering disciplines interested in electromechanical modeling of piezoelectric energy harvesters.

Collaboration


Dive into the Daniel J. Inman's collaboration.

Top Co-Authors

Avatar

Alper Erturk

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gyuhae Park

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Onur Bilgen

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar

Steven R. Anton

Tennessee Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge