Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henry A. Sodano is active.

Publication


Featured researches published by Henry A. Sodano.


Smart Materials and Structures | 2007

A review of power harvesting using piezoelectric materials (2003-2006)

Steven R. Anton; Henry A. Sodano

The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.


The Shock and Vibration Digest | 2004

A Review of Power Harvesting from Vibration using Piezoelectric Materials

Henry A. Sodano; Daniel J. Inman; Gyuhae Park

The process of acquiring the energy surrounding a system and converting it into usable electrical energy is termed power harvesting. In the last few years, there has been a surge of research in the area of power harvesting. This increase in research has been brought on by the modern advances in wireless technology and low-power electronics such as microelectromechanical systems. The advances have allowed numerous doors to open for power harvesting systems in practical real-world applications. The use of piezoelectric materials to capitalize on the ambient vibrations surrounding a system is one method that has seen a dramatic rise in use for power harvesting. Piezoelectric materials have a crystalline structure that provides them with the ability to transform mechanical strain energy into electrical charge and, vice versa, to convert an applied electrical potential into mechanical strain. This property provides these materials with the ability to absorb mechanical energy from their surroundings, usually ambient vibration, and transform it into electrical energy that can be used to power other devices. While piezoelectric materials are the major method of harvesting energy, other methods do exist; for example, one of the conventional methods is the use of electromagnetic devices. In this paper we discuss the research that has been performed in the area of power harvesting, and the future goals that must be achieved for power harvesting systems to find their way into everyday use.


Journal of Intelligent Material Systems and Structures | 2005

Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries

Henry A. Sodano; Daniel J. Inman; Gyuhae Park

Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy that can then be stored and used to power other devices. With the recent surge of microscale devices, piezoelectric power generation can provide a convenient alternative to traditional power sources used to operate certain types of sensors/actuators, telemetry, and MEMS devices. However, the energy produced by these materials is in many cases far too small to directly power an electrical device. Therefore, much of the research into power harvesting has focused on methods of accumulating the energy until a sufficient amount is present, allowing the intended electronics to be powered. In a recent study by Sodano et al. (2004a) the ability to take the energy generated through the vibration of a piezoelectric material was shown to be capable of recharging a discharged nickel metal hydride battery. In the present study, three types of piezoelectric devices are investigated and experimentally tested to determine each of their abilities to transform ambient vibration into electrical energy and their capability to recharge a discharged battery. The three types of piezoelectric devices tested are the commonly used monolithic piezoceramic material lead–zirconate–titanate (PZT), the bimorph Quick Pack (QP) actuator, and the macro-fiber composite (MFC). The experimental results estimate the efficiency of the three devices tested and identify the feasibility of their use in practical applications. Different capacity batteries are recharged using each device, to determine the charge time and maximum capacity battery that can be charged. The results presented in this article provide a means of choosing the piezoelectric device to be used and estimate the amount of time required to recharge a specific capacity battery.


Nano Letters | 2013

Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires.

Haixiong Tang; Henry A. Sodano

Nanocomposites combining a high breakdown strength polymer and high dielectric permittivity ceramic filler have shown great potential for pulsed power applications. However, while current nanocomposites improve the dielectric permittivity of the capacitor, the gains come at the expense of the breakdown strength, which limits the ultimate performance of the capacitor. Here, we develop a new synthesis method for the growth of barium strontium titanate nanowires and demonstrate their use in ultra high energy density nanocomposites. This new synthesis process provides a facile approach to the growth of high aspect ratio nanowires with high yield and control over the stoichiometry of the solid solution. The nanowires are grown in the cubic phase with a Ba0.2Sr0.8TiO3 composition and have not been demonstrated prior to this report. The poly(vinylidene fluoride) nanocomposites resulting from this approach have high breakdown strength and high dielectric permittivity which results from the use of high aspect ratio fillers rather than equiaxial particles. The nanocomposites are shown to have an ultra high energy density of 14.86 J/cc at 450 MV/m and provide microsecond discharge time quicker than commercial biaxial oriented polypropylene capacitors. The energy density of our nanocomposites exceeds those reported in the literature for ceramic/polymer composites and is 1138% greater than the reported commercial capacitor with energy density of 1.2 J/cc at 640 MV/m for the current state of the art biaxial oriented polypropylene.


Mechanical Systems and Signal Processing | 2004

An investigation into the performance of macro-fiber composites for sensing and structural vibration applications

Henry A. Sodano; Gyuhae Park; Daniel J. Inman

Abstract This paper presents the use of macro-fiber composites (MFC) for vibration suppression and structural health monitoring. The major advantages of the piezoelectric fiber composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. The recently developed MFC actuator provides these advantages and can be used in structural vibration applications. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed that an MFC could be used as a sensor and actuator to find modal parameters of an inflatable structure. This sensor and actuator combination has also been used to reduce vibration in an inflated object. Once the sensing capability was identified, we developed a self-sensing circuit for an MFC. Our experimental results clearly indicate that this strategy can suppress structural vibration, while reducing the number of system components. Finally, the MFC has been implemented as impedance sensor for structural health monitoring (e.g. a of bolted joint connection). The experimental results presented in this paper show the potential of MFC for use in the dynamics and control of flexible structures.


Nano Letters | 2012

Highly efficient synthesis of graphene nanocomposites.

Haixiong Tang; Gregory J. Ehlert; Yirong Lin; Henry A. Sodano

Graphene consists of a monolayer of sp(2) bonded carbon atoms and has attracted considerable interest over recent years due to its extreme mechanical, electrical, and thermal properties. Graphene nanocomposites have naturally begun to be studied to capitalize upon these properties. A range of complex chemical and physical processing methods have been devised that achieve isolated graphene sheets that attempt to prevent aggregation. Here we demonstrate that the simple casting of a polymer solution containing dispersed graphene oxide, followed by thermal reduction, can produce well-isolated monolayer reduced-graphene oxide. The presence of single layer reduced-graphene oxide is quantitatively demonstrated through transmission electron microscopy and selected area electron diffraction studies and the reduction is verified by thermogravimetric, X-ray photoelectron spectroscopy, infrared spectrum, and electrical conductivity studies. These findings provide a simple, environmentally benign and commercially viable process to produce reduced-graphene oxide reinforced polymers without complex manufacturing, dispersion or reduction processes.


Journal of Intelligent Material Systems and Structures | 2005

Generation and Storage of Electricity from Power Harvesting Devices

Henry A. Sodano; Daniel J. Inman; Gyuhae Park

The concept of capturing the normally lost energy surrounding a system and converting it into electrical energy that can be used to extend the lifetime of that system’s power supply or possibly provide an endless supply of energy to an electronic device has captivated many researchers and has brought forth a growing amount of attention to power harvesting. One of the most common methods of obtaining the energy surrounding a system is to use piezoelectric materials. Piezoelectric materials have a crystalline structure that provides a unique ability to convert an applied electrical potential into a mechanical strain or vice versa, or convert an applied strain into an electrical current. The latter of these two properties allows the material to function as a power harvesting medium. In most cases the piezoelectric material is strained through the ambient vibration around the structure, thus allowing a frequently unused energy source to be utilized for the purpose of powering small electronic systems. However, the amount of energy generated by these piezoelectric materials is far smaller than that needed by most electronic devices. For this reason, the methods of accumulating and storing the energy generated, until sufficient power has been captured, is the key to developing completely self-powered systems. This article quantifies the amount of energy generated by a piezoelectric plate and investigates two methods of accumulating the energy thus produced. The first method uses a capacitor, which in early research has been the most common method of storing the energy generated and the second utilizes rechargeable nickel metal hydride batteries. The advantages of each method are discussed and the rechargeable battery is found to have more desirable qualities for power harvesting than the capacitor. Additionally, this manuscript represents, for the first time, the fact that the power output by a piezoelectric material is capable of recharging a discharged battery. Through the excitation of a piezoelectric plate, it is demonstrated that a 40 mAh battery can be charged in less than half an hour at resonance and in only a few hours with a random signal similar to that of a typical vibrating piece of machinery.


Smart Materials and Structures | 2007

Energy harvesting from a backpack instrumented with piezoelectric shoulder straps

Jonathan Granstrom; Joel Feenstra; Henry A. Sodano; Kevin M. Farinholt

Over the past few decades the use of portable and wearable electronics has grown steadily. These devices are becoming increasingly more powerful. However, the gains that have been made in the device performance have resulted in the need for significantly higher power to operate the electronics. This issue has been further complicated due to the stagnant growth of battery technology over the past decade. In order to increase the life of these electronics, researchers have begun investigating methods of generating energy from ambient sources such that the life of the electronics can be prolonged. Recent developments in the field have led to the design of a number of mechanisms that can be used to generate electrical energy, from a variety of sources including thermal, solar, strain, inertia, etc. Many of these energy sources are available for use with humans, but their use must be carefully considered such that parasitic effects that could disrupt the users gait or endurance are avoided. These issues have arisen from previous attempts to integrate power harvesting mechanisms into a shoe such that the energy released during a heal strike could be harvested. This study develops a novel energy harvesting backpack that can generate electrical energy from the differential forces between the wearer and the pack. The goal of this system is to make the energy harvesting device transparent to the wearer such that his or her endurance and dexterity is not compromised. This will be accomplished by replacing the traditional strap of the backpack with one made of the piezoelectric polymer polyvinylidene fluoride (PVDF). Piezoelectric materials have a structure such that an applied electrical potential results in a mechanical strain. Conversely, an applied stress results in the generation of an electrical charge, which makes the material useful for power harvesting applications. PVDF is highly flexible and has a high strength, allowing it to effectively act as the load bearing member. In order to preserve the performance of the backpack and user, the design of the pack will be held as close to existing systems as possible. This paper develops a theoretical model of the piezoelectric strap and uses experimental testing to identify its performance in this application.


ACS Applied Materials & Interfaces | 2011

Superhydrophobic functionalized graphene aerogels.

Yirong Lin; Gregory J. Ehlert; Colton Bukowsky; Henry A. Sodano

Carbon-based nanomaterials such as carbon nanotubes and graphene are excellent candidates for superhydrophobic surfaces because of their intrinsically high surface area and nonpolar carbon structure. This paper demonstrates that graphene aerogels with a silane surface modification can provide superhydrophobicity. Graphene aerogels of various concentrations were synthesized and the receding contact angle of a water droplet was measured. It is shown that graphene aerogels are hydrophobic and become superhydrophobic following the application of a fluorinated surfactant. The aerogels produced for this experiment outperform previous carbon nanomaterials in creating superhydrophobic surfaces and offer a more scalable synthetic procedure for production.


Smart Materials and Structures | 2008

Model of a single mode energy harvester and properties for optimal power generation

Yabin Liao; Henry A. Sodano

The process of acquiring the energy surrounding a system and converting it into usable electrical energy is termed power harvesting. In the last few years, the field of power harvesting has experienced significant growth due to the ever increasing desire to produce portable and wireless electronics with extended life. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their finite energy supply, which necessitates their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and covert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. The development of energy harvesting systems is greatly facilitated by an accurate model to assist in the design of the system. This paper will describe a theoretical model of a piezoelectric based energy harvesting system that is simple to apply yet provides an accurate prediction of the power generated around a single mode of vibration. Furthermore, this model will allow optimization of system parameters to be studied such that maximal performance can be achieved. Using this model an expression for the optimal resistance and a parameter describing the energy harvesting efficiency will be presented and evaluated through numerical simulations. The second part of this paper will present an experimental validation of the model and optimal parameters.

Collaboration


Dive into the Henry A. Sodano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yirong Lin

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi Zhou

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gyuhae Park

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge