Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Milton is active.

Publication


Featured researches published by Daniel J. Milton.


Icarus | 1974

Erosion by catastrophic floods on Mars and Earth

Victor R. Baker; Daniel J. Milton

Abstract The large Martian channels, especially Kasei, Ares, Tiu, Simud, and Mangala Valles, show morphologic features strikingly similar to those of the Channeled Scabland of eastern Washington, produced by the catastrophic breakout floods of Pleistocene Lake Missoula. Features in the overall pattern include the great size, regional anastomosis, and low sinuosity of the channels. Erosional features are streamlined hills, longitudinal grooves, inner channel cataracts, scour upstream of flow obstacles, and perhaps marginal cataracts and butte and basin topography. Depositional features are bar complexes in expanding reaches and perhaps pendant bars and alcove bars. Scabland erosion takes place in exceedingly deep, swift floodwater acting on closely jointed bedrock as a hydrodynamic consequence of secondary flow phenomena, including various forms of macroturbulent votices and flow separations. If the analogy to the Channeled Scabland is correct, floods involving water discharges of millions of cubic meters per second and peak flow velocities of tens of meters per second, but perhaps lasting no more than a few days, have occurred on Mars.


Icarus | 1972

Preliminary mariner 9 report on the geology of Mars

John F. McCauley; Michael H. Carr; James A. Cutts; William K. Hartmann; Harold Masursky; Daniel J. Milton; Robert P. Sharp; Don E. Wilhelms

Abstract Mariner 9 pictures indicate that the surface of Mars has been shaped by impact, volcanic, tectonic, erosional and depositional activity. The moonlike cratered terrain, identified as the dominant surface unit from the Mariner 6 and 7 flyby data, has proven to be less typical of Mars than previously believed, although extensive in the mid- and high-latitude regions of the southern hemisphere. Martian craters are highly modified but their size-frequency distribution and morphology suggest that most were formed by impact. Circular basins encompassed by rugged terrain and filled with smooth plains material are recognized. These structures, like the craters, are more modified than corresponding features on the Moon and they exercise a less dominant influence on the regional geology. Smooth plains with few visible craters fill the large basins and the floors of larger craters; they also occupy large parts of the northern hemisphere where the plains lap against higher landforms. The middle northern latitudes of Mars from 90 to 150† longitude contain at least four large shield volcanoes each of which is about twice as massive as the largest on Earth. Steep-sided domes with summit craters and large, fresh-appearing volcanic craters with smooth rims are also present in this region. Multiple flow structures, ridges with lobate flanks, chain craters, and sinuous rilles occur in all regions, suggesting widespread volcanism. Evidence for tectonic activity postdating formation of the cratered terrain and some of the plains units is abundant in the equatorial area from 0 to 120° longitude.Some regions exhibit a complex semiradial array of graben that suggest doming and stretching of the surface. Others contain intensity faulted terrain with broader, deeper graben separated by a complex mosaic of flat-topped blocks. An east-west-trending canyon system about 100–200 km wide and about 2500 km long extends through the Coprates-Eos region. The canyons have gullied walls indicative of extensive headward erosion since their initial formation. Regionally depressed areas called chaotic terrain consist of intricately broken and jumbled blocks and appear to result from breaking up and slumping of older geologic units. Compressional features have not been identified in any of the pictures analyzed to data. Plumose light and dark surface markings can be explained by eolian transport. Mariner 9 has thus revealed that Mars is a complex planet with its own distinctive geologic history and that it is less primitive than the Moon.


Icarus | 1972

Geological framework of the south polar region of Mars.

Bruce C. Murray; Laurence A. Soderblom; James A. Cutts; Robert P. Sharp; Daniel J. Milton; Robert B. Leighton

Abstract The first 4 months of Mariner 9 photography of the south polar region are discussed. Three major geological units have been recognized, separated by erosional unconformities. From oldest to youngest they are: cratered terrain, pitted plains, and laminated terrain. The latter unit is unique in occurrence to the polar region, volatiles are probably involved in its origin, and may still be present within the laminated terrain as layered ice. The residual south polar cap has been observed to survive the disappearance of the thin annual CO2 frost deposit and to last virtually unchanged in outline through the southern summer. That exposed deposit is inferred to be composed of water-ice. The residual cap appears to lie at the apex of an unusual quasi-circular structure composed of laminated terrain; a similar structure also appears to exist near the north pole.


Science | 1973

Lonar Lake, India: An Impact Crater in Basalt

K. Fredriksson; A. Dube; Daniel J. Milton; M. S. Balasundaram

Discovery of shock-metamorphosed material establishes the impact origin of Lonar Crater. Coarse breccia with shatter coning and microbreccia with moderately shocked fragments containing maskelynite were found in drill holes through the crater floor. Trenches on the rim yield strongly shocked fragments in which plagioclase has melted and vesiculated, and bombs and spherules of homogeneous rock melt. As the only known terrestrial impact crater in basalt, Lonar Crater provides unique opportunities for comparison with lunar craters. In particular, microbreccias and glass spherules from Lonar Crater have close analogs among the Apollo specimens.


Science | 1963

Maskelynite: Formation by explosive shock

Daniel J. Milton; P. S. De Carli

When high pressure (250 to 300 kilobars) was applied suddenly (shock-loading) to gabbro, the plagioclase was transformed to a noncrystalline phase (maskelynite) by a solid-state reaction at a low temperature, while the proxene remained crystalline. The shock-loaded gabbro resembles meteorites of the shergottite class; this suggests that the latter formed as a result of shock. The shock-loading of gabbro at 600 to 800 kilobars raised the temperature above the melting range of the plagioclase.


Science | 1972

Mariner 9 television reconnaissance of Mars and its satellites: Preliminary results

Harold Masursky; Raymond M. Batson; John F. McCauley; L. A. Soderblom; Robert L. Wildey; Michael H. Carr; Daniel J. Milton; Don E. Wilhelms; Bradford A. Smith; T. B. Kirby; J.C. Robinson; Conway B. Leovy; G. Briggs; T. C. Duxbury; C. H. Acton; Bruce C. Murray; James A. Cutts; Robert P. Sharp; Susan Smith; Robert B. Leighton; Carl Sagan; Joseph Veverka; M. Noland; Joshua Lederberg; Elliott C. Levinthal; J. B. Pollack; J. T. Moore; William K. Hartmann; E. Shipley; G. de Vaucouleurs

At orbit insertion on 14 November 1971 the Martian surface was largely obscured by a dust haze with an extinction optical depth that ranged from near unity in the south polar region to probably greater than 2 over most of the planet. The only features clearly visible were the south polar cap, one dark, spot in Nix Olympica, and three dark spots in the Tharsis region. During the third week the atmosphere began to clear and surface visibility improved, but contrasts remained a fraction of their normal value. Each of the dark spots that apparently protrude through most of the dust-filled atmosphere has a crater or crater complex in its center. The craters are rimless and have featureless floors that, in the crater complexes, are at different levels. The largest crater within the southernmost spot is approximately 100 kilometers wide. The craters apparently were formed by subsidence and resemble terrestrial calderas. The south polar cap has a regular margin, suggsting very flat topography. Two craters outside the cap have frost on their floors; an apparent crater rim within the cap is frost free, indicating preferentia loss of frost from elevated ground. If this is so then the curvilinear streaks, which were frost covered in 1969 and are now clear of frost, may be low-relief ridges. Closeup pictures of Phobos and Deimos show that Phobos is about 25 �5 by 21 �1 kilometers and Deimos is about 13.5 � 2 by 12.0 �0.5 kilometers. Both have irregular shapes and are highly cratered, with some craters showing raised rims. The satellites are dark objects with geometric albedos of 0.05.


Science | 1965

Stishovite: Synthesis by Shock Wave

Paul S. De Carli; Daniel J. Milton

Small amounts of stishovite were separated from specimens of explosively shocked sandstones, novaculite, and single-crystal quartz. Estimated peak pressures for the syntheses ranged from 150 to 280 kilobars, and shock temperatures were from 150� to 900�C. No coesite was detected in any sample. It is suggested that quartz can invert during shock to a short-range-order phase, with sixfold coordination. A small portion of this phase may develop the long-range order of stishovite, and, during the more protracted decrease of the pressure pulse through the stability field of coesite accompanying meteorite crater formation, a portion may invert to coesite.


Science | 1974

Carbon dioxide hydrate and floods on Mars.

Daniel J. Milton

Ground ice on Mars probably consists largely of carbon dioxide hydrate, CO2 � 6H2O. This hydrate dissociates upon release of pressure at temperatures between 0� and 10�C. The heat capacity of the ground would be sufficient to produce up to 4 percent (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near surface temperature was in this range would have produced chaotic terrain and flood channels.


Earth Moon and Planets | 1980

Morphology of Lonar Crater, India: Comparisons and implications

R. F. Fudali; Daniel J. Milton; K. Fredriksson; A. Dube

Lonar Crater is a young meteorite impact crater emplaced in Deccan basalt. Data from 5 drillholes, a gravity network, and field mapping are used to reconstruct its original dimensions, delineate the nature of the pre-impact target rocks, and interpret the emplacement mode of the ejecta. Our estimates of the pre-erosion dimensions are: average diameter of 1710 m; average rim height of 40 m (30–35 m of rim rock uplift, 5–10 m of ejected debris); depth of 230–245 m (from rim crest to crater floor). The craters circularity index is 0.9 and is unlikely to have been lower in the past. There are minor irregularities in the original crater floor (present sediment-breccia boundary) possibly due to incipient rebound effects. A continuous ejecta blanket extends an average of 1410 m beyond the pre-erosion rim crest.In general, ‘fresh’ terrestrial craters, less than 10 km in diameter, have smaller depth/diameter and larger rim height/diameter ratios than their lunar counterparts. Both ratios are intermediate for Mercurian craters, suggesting that crater shape is gravity dependent, all else being equal. Lonar demonstrates that all else is not always equal. Its depth/diameter ratio is normal but, because of less rim rock uplift, its rim height/diameter ratio is much smaller than both ‘fresh’ terrestrial and lunar impact craters. The target rock column at Lonar consists of one or more layers of weathered, soft basalt capped by fresh, dense flows. Plastic deformation and/or compaction of this lower, incompetent material probably absorbed much of the energy normally available in the cratering process for rim rock uplift.A variety of features within the ejecta blanket and the immediately underlying substrate, plus the broad extent of the blanket boundaries, suggest that a fluidized debris surge was the dominant mechanism of ejecta transportation and deposition at Lonar. In these aspects, Lonar should be a good analog for the ‘fluidized craters’ of Mars.


Icarus | 1972

Mariner 9 television observations of Phobos and Deimos

James B. Pollack; Joseph Veverka; M. Noland; Carl Sagan; W.K. Hartmann; Thomas C. Duxbury; G.H. Born; Daniel J. Milton; Bradford A. Smith

Abstract Mariner 9 photographs of Phobos and Deimos have yielded new information about the orbits, rotation periods, sizes, shapes, and surface characteristics of the satellites. Both satellites appear to be in synchronous rotation. They are irregular, heavily cratered bodies whose shapes appear to have been determined largely by impact fragmentation and spalling. The surfaces of both satellites have crater densities close to saturation and nearly identical, very low albedos. Lower limits on the tensile and yield strengths are estimated, and it is concluded that both satellites may consist of well-consolidated, though possibly highly fractured material.

Collaboration


Dive into the Daniel J. Milton's collaboration.

Top Co-Authors

Avatar

Don E. Wilhelms

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Harold Masursky

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John F. McCauley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Michael H. Carr

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert P. Sharp

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce C. Murray

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Cutts

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge