Daniel Kumazawa Morais
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Kumazawa Morais.
Journal of Microbiological Methods | 2014
Victor Satler Pylro; Luiz Fernando Wurdig Roesch; Daniel Kumazawa Morais; Ian Clark; Penny R. Hirsch; Marcos Rogério Tótola
Progress in microbial ecology is confounded by problems when evaluating results from different sequencing methodologies. Contrary to existing expectations, here we demonstrate that the same biological conclusion is reached using different NGS technologies when stringent sequence quality filtering and accurate clustering algorithms are applied.
Microbial Ecology | 2014
Victor Satler Pylro; Luiz Fernando Wurdig Roesch; José Miguel Ortega; Alexandre Morais do Amaral; Marcos Rogério Tótola; Penny R. Hirsch; Alexandre S. Rosado; Aristóteles Góes-Neto; Artur Silva; Carlos A. Rosa; Daniel Kumazawa Morais; Fernando Dini Andreote; Gabriela Frois Duarte; Itamar Soares de Melo; Lucy Seldin; Marcio R. Lambais; Mariangela Hungria; Raquel S. Peixoto; Ricardo Henrique Kruger; Siu Mui Tsai; Vasco Azevedo
The Brazilian Microbiome Project (BMP) aims to assemble a Brazilian Metagenomic Consortium/Database. At present, many metagenomic projects underway in Brazil are widely known. Our goal in this initiative is to co-ordinate and standardize these together with new projects to come. It is estimated that Brazil hosts approximately 20 % of the entire world’s macroorganism biological diversity. It is 1 of the 17 countries that share nearly 70 % of the world’s catalogued animal and plant species, and is recognized as one of the most megadiverse countries. At the end of 2012, Brazil has joined GBIF (Global Biodiversity Information Facility), as associated member, to improve the access to the Brazilian biodiversity data in a free and open way. This was an important step toward increasing international collaboration and clearly shows the commitment of the Brazilian government in directing national policies toward sustainable development. Despite its importance, the Brazilian microbial diversity is still considered to be largely unknown, and it is clear that to maintain ecosystem dynamics and to sustainably manage land use, it is crucial to understand the biological and functional diversity of the system. This is the first attempt to collect and collate information about Brazilian microbial genetic and functional diversity in a systematic and holistic manner. The success of the BMP depends on a massive collaborative effort of both the Brazilian and international scientific communities, and therefore, we invite all colleagues to participate in this project.
PLOS Neglected Tropical Diseases | 2016
Victor Satler Pylro; Francislon S. Oliveira; Daniel Kumazawa Morais; Sara Cuadros-Orellana; Fabiano Sviatopolk-Mirsky Pais; Julliane Dutra Medeiros; Juliana Assis Geraldo; Jack A. Gilbert; Angela Cristina Volpini; Gabriel da Rocha Fernandes
Background In early 2015, a ZIKA Virus (ZIKV) infection outbreak was recognized in northeast Brazil, where concerns over its possible links with infant microcephaly have been discussed. Providing a causal link between ZIKV infection and birth defects is still a challenge. MicroRNAs (miRNAs) are small noncoding RNAs (sncRNAs) that regulate post-transcriptional gene expression by translational repression, and play important roles in viral pathogenesis and brain development. The potential for flavivirus-mediated miRNA signalling dysfunction in brain-tissue development provides a compelling hypothesis to test the perceived link between ZIKV and microcephaly. Methodology/Principal Findings Here, we applied in silico analyses to provide novel insights to understand how Congenital ZIKA Syndrome symptoms may be related to an imbalance in miRNAs function. Moreover, following World Health Organization (WHO) recommendations, we have assembled a database to help target investigations of the possible relationship between ZIKV symptoms and miRNA-mediated human gene expression. Conclusions/Significance We have computationally predicted both miRNAs encoded by ZIKV able to target genes in the human genome and cellular (human) miRNAs capable of interacting with ZIKV genomes. Our results represent a step forward in the ZIKV studies, providing new insights to support research in this field and identify potential targets for therapy.
PeerJ | 2016
Daniel Kumazawa Morais; Victor Satler Pylro; Ian Clark; Penny R. Hirsch; Marcos Rogério Tótola
Brazilian offshore crude oil exploration has increased after the discovery of new reservoirs in the region known as pré-sal, in a depth of 7.000 m under the water surface. Oceanic islands near these areas represent sensitive environments, where changes in microbial communities due oil contamination could stand for the loss of metabolic functions, with catastrophic effects to the soil services provided from these locations. This work aimed to evaluate the effect of petroleum contamination on microbial community shifts (Archaea, Bacteria and Fungi) from Trindade Island coastal soils. Microcosms were assembled and divided in two treatments, control and contaminated (weathered crude oil at the concentration of 30 g kg−1), in triplicate. Soils were incubated for 38 days, with CO2 measurements every four hours. After incubation, the total DNA was extracted, purified and submitted for target sequencing of 16S rDNA, for Bacteria and Archaea domains and Fungal ITS1 region, using the Illumina MiSeq platform. Three days after contamination, the CO2 emission rate peaked at more than 20 × the control and the emissions remained higher during the whole incubation period. Microbial alpha-diversity was reduced for contaminated-samples. Fungal relative abundance of contaminated samples was reduced to almost 40% of the total observed species. Taxonomy comparisons showed rise of the Actinobacteria phylum, shifts in several Proteobacteria classes and reduction of the Archaea class Nitrososphaerales. This is the first effort in acquiring knowledge concerning the effect of crude oil contamination in soils of a Brazilian oceanic island. This information is important to guide any future bioremediation strategy that can be required.
Frontiers in Microbiology | 2017
Ubiana de Cássia Silva; Julliane Dutra Medeiros; Laura Rabelo Leite; Daniel Kumazawa Morais; Sara Cuadros-Orellana; Christiane A. Oliveira; U. G. P. Lana; Eliane Aparecida Gomes; Vera Lúcia dos Santos
Phosphate fertilization is a common practice in agriculture worldwide, and several commercial products are widely used. Triple superphosphate (TSP) is an excellent soluble phosphorus (P) source. However, its high cost of production makes the long-term use of crude rock phosphate (RP) a more attractive alternative in developing countries, albeit its influence on plant-associated microbiota remains unclear. Here, we compared long-term effects of TSP and RP fertilization on the structure of maize rhizosphere microbial community using next generation sequencing. Proteobacteria were dominant in all conditions, whereas Oxalobacteraceae (mainly Massilia and Herbaspirillum) was enriched in the RP-amended soil. Klebsiella was the second most abundant taxon in the RP-treated soil. Burkholderia sp. and Bacillus sp. were enriched in the RP-amended soil when compared to the TSP-treated soil. Regarding fungi, Glomeromycota showed highest abundance in RP-amended soils, and the main genera were Scutellospora and Racocetra. These taxa are already described as important for P solubilization/acquisition in RP-fertilized soil. Maize grown on TSP and RP-treated soil presented similar productivity, and a positive correlation was detected for P content and the microbial community of the soils. The results suggest changes of the microbial community composition associated to the type of phosphate fertilization. Whilst it is not possible to establish causality relations, our data highlights a few candidate taxa that could be involved in RP solubilization and plant growth promotion. Moreover, this can represent a shorter path for further studies aiming the isolation and validation of the taxa described here concerning P release on the soil plant system and their use as bioinoculants.
Microbial Ecology | 2018
Edmo Montes Rodrigues; Daniel Kumazawa Morais; Victor Satler Pylro; Marc Redmile-Gordon; Juraci Alves de Oliveira; Luiz Fernando Wurdig Roesch; Dionéia Evangelista Cesar; Marcos Rogério Tótola
The microbial diversity and functioning around oceanic islands is poorly described, despite its importance for ecosystem homeostasis. Here, we aimed to verify the occurrence of microbe-driven phenanthrene co-oxidation in the seawater surrounding the Trindade Island (Brazil). We also used Next-Generation Sequencing to evaluate the effects of aliphatic and polycyclic aromatic hydrocarbons (PAHs) on these microbial community assemblies. Microcosms containing seawater from the island enriched with either labelled (9-14C) or non-labelled phenanthrene together with hexadecane, weathered oil, fluoranthene or pyrene, and combinations of these compounds were incubated. Biodegradation of phenanthrene-9-14C was negatively affected in the presence of weathered oil and PAHs but increased in the presence of hexadecane. PAH contamination caused shifts in the seawater microbial community—from a highly diverse one dominated by Alphaproteobacteria to less diverse communities dominated by Gammaproteobacteria. Furthermore, the combination of PAHs exerted a compounded negative influence on the microbial community, reducing its diversity and thus functional capacity of the ecosystem. These results advance our understanding of bacterial community dynamics in response to contrasting qualities of hydrocarbon contamination. This understanding is fundamental in the application and monitoring of bioremediation strategies if accidents involving oil spillages occur near Trindade Island and similar ecosystems.
bioRxiv | 2018
Douglas E. V. Pires; Francislon S. Oliveira; Felipe B. Correa; Daniel Kumazawa Morais; Gabriel da Rocha Fernandes
Background Sequencing of amplified genetic markers, such as the 16S rRNA gene, have been extensively used to characterize microbial community composition. Recent studies suggested that Amplicon Sequences Variants (ASV) should replace the Operational Taxonomic Units (OTU), given the arbitrary definition of sequence identity thresholds used to define units. Alignment-free methods are an interesting alternative for the taxonomic classification of the ASVs, preventing the introduction of biases from sequence identity thresholds. Results Here we present TAG.ME, a novel alignment-independent and amplicon-specific method for taxonomic assignment based on genetic markers. TAG.ME uses a multilevel supervised learning approach to create predictive models based on user-defined genetic marker genes. The predictive method can assign taxonomy to sequenced amplicons efficiently and effectively. We applied our method to assess gut and soil sample classification, and it outperformed alternative approaches, identifying a substantially larger proportion of species. Benchmark tests performed using the RDP database, and Mock communities reinforced the precise classification into deep taxonomic levels. Conclusion TAG.ME presents a new approach to assign taxonomy to amplicon sequences accurately. Our classification model, trained with amplicon specific sequences, can address resolution issues not solved by other methods and approaches that use the whole 16S rRNA gene sequence. TAG.ME is implemented as an R package and is freely available at http://gabrielrfernandes.github.io/tagme/
PeerJ | 2018
Daniel Kumazawa Morais; Luiz Fernando Wurdig Roesch; Marc Redmile-Gordon; Fausto G. dos Santos; Petr Baldrian; Fernando Dini Andreote; Victor Satler Pylro
Recent advances in Next-Generation Sequencing (NGS) make comparative analyses of the composition and diversity of whole microbial communities possible at a far greater depth than ever before. This brings new challenges, such as an increased dependence on computation to process these huge datasets. The demand on system resources usually requires migrating from Windows to Linux-based operating systems and prior familiarity with command-line interfaces. To overcome this barrier, we developed a fully automated and easy-to-install package as well as a complete, easy-to-follow pipeline for microbial metataxonomic analysis operating in the Windows Subsystem for Linux (WSL)—Bioinformatics Through Windows (BTW). BTW combines several open-access tools for processing marker gene data, including 16S rRNA, bringing the user from raw sequencing reads to diversity-related conclusions. It includes data quality filtering, clustering, taxonomic assignment and further statistical analyses, directly in WSL, avoiding the prior need of migrating from Windows to Linux. BTW is expected to boost the use of NGS amplicon data by facilitating rapid access to a set of bioinformatics tools for Windows users. Moreover, several Linux command line tools became more reachable, which will enhance bioinformatics accessibility to a wider range of researchers and practitioners in the life sciences and medicine. BTW is available in GitHub (https://github.com/vpylro/BTW). The package is freely available for noncommercial users.
Microbial Ecology | 2018
Aleš Eichmeier; Tomáš Kiss; Tomáš Nečas; Eliska Penazova; Dorota Tekielska; Marketa Bohunicka; Lucie Valentova; Radek Cmejla; Daniel Kumazawa Morais; Petr Baldrian
Abstract“Candidatus Phytoplasma prunorum” (CPp) is a highly destructive phytopathogenic agent in many stone fruit-growing regions in Europe and the surrounding countries. In this work, we focused on documenting entire bacterial community in the phloem tissues of 60 stone fruit trees. Nested PCR and two real-time PCR assays were used to select CPp-positive (group A) and CPp-negative samples (group B). Afterwards, high-throughput amplicon sequencing was performed to assess bacterial community compositions in phloem tissues. The bacterial composition in phloem tissue consisted of 118 distinct genera, represented mainly by Pseudomonas, Acinetobacter, Methylobacterium, Sphingomonas, and Rhizobium. Statistics showed that CPp influenced the bacterial composition of infected plants (group A) and that the bacterial community depended on the geographical origin of the sample. This is the first work focusing on an analysis of the influence of CPp on the bacteria coexisting in the phloem tissues of stone fruit trees.
Genome Announcements | 2018
Victor Satler Pylro; Armando Cavalcante Franco Dias; Fernando Dini Andreote; Daniel Kumazawa Morais; Alessandro M. Varani; Cristiane Cipolla Fasanella Andreote; Eduardo Roberto de Almeida Bernardo; Tiago Domingues Zucchi
ABSTRACT We report here the closed and near-complete genome sequence and annotation of Bacillus velezensis strain AGVL-005, a bacterium isolated from soybean seeds in Brazil and used for phytopathogen biocontrol.