Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor Satler Pylro is active.

Publication


Featured researches published by Victor Satler Pylro.


Journal of Microbiological Methods | 2014

Data analysis for 16S microbial profiling from different benchtop sequencing platforms

Victor Satler Pylro; Luiz Fernando Wurdig Roesch; Daniel Kumazawa Morais; Ian Clark; Penny R. Hirsch; Marcos Rogério Tótola

Progress in microbial ecology is confounded by problems when evaluating results from different sequencing methodologies. Contrary to existing expectations, here we demonstrate that the same biological conclusion is reached using different NGS technologies when stringent sequence quality filtering and accurate clustering algorithms are applied.


Microbial Ecology | 2014

Brazilian Microbiome Project: revealing the unexplored microbial diversity--challenges and prospects.

Victor Satler Pylro; Luiz Fernando Wurdig Roesch; José Miguel Ortega; Alexandre Morais do Amaral; Marcos Rogério Tótola; Penny R. Hirsch; Alexandre S. Rosado; Aristóteles Góes-Neto; Artur Silva; Carlos A. Rosa; Daniel Kumazawa Morais; Fernando Dini Andreote; Gabriela Frois Duarte; Itamar Soares de Melo; Lucy Seldin; Marcio R. Lambais; Mariangela Hungria; Raquel S. Peixoto; Ricardo Henrique Kruger; Siu Mui Tsai; Vasco Azevedo

The Brazilian Microbiome Project (BMP) aims to assemble a Brazilian Metagenomic Consortium/Database. At present, many metagenomic projects underway in Brazil are widely known. Our goal in this initiative is to co-ordinate and standardize these together with new projects to come. It is estimated that Brazil hosts approximately 20 % of the entire world’s macroorganism biological diversity. It is 1 of the 17 countries that share nearly 70 % of the world’s catalogued animal and plant species, and is recognized as one of the most megadiverse countries. At the end of 2012, Brazil has joined GBIF (Global Biodiversity Information Facility), as associated member, to improve the access to the Brazilian biodiversity data in a free and open way. This was an important step toward increasing international collaboration and clearly shows the commitment of the Brazilian government in directing national policies toward sustainable development. Despite its importance, the Brazilian microbial diversity is still considered to be largely unknown, and it is clear that to maintain ecosystem dynamics and to sustainably manage land use, it is crucial to understand the biological and functional diversity of the system. This is the first attempt to collect and collate information about Brazilian microbial genetic and functional diversity in a systematic and holistic manner. The success of the BMP depends on a massive collaborative effort of both the Brazilian and international scientific communities, and therefore, we invite all colleagues to participate in this project.


Frontiers in Microbiology | 2016

Back to the Future of Soil Metagenomics

Joseph Nesme; Wafa Achouak; Spiros N. Agathos; Mark J. Bailey; Petr Baldrian; Dominique Brunel; Åsa Frostegård; Thierry Heulin; Janet K. Jansson; Edouard Jurkevitch; Kristiina Kruus; George A. Kowalchuk; Antonio Lagares; Hilary M. Lappin-Scott; Philippe Lemanceau; Denis Le Paslier; Ines Mandic-Mulec; J. Colin Murrell; David D. Myrold; Renaud Nalin; P. Nannipieri; Josh D. Neufeld; Fergal O'Gara; John Jacob Parnell; Alfred Pühler; Victor Satler Pylro; Juan L. Ramos; Luiz Fernando Wurdig Roesch; Michael Schloter; Christa Schleper

Direct extraction and characterization of microbial community DNA through PCR amplicon surveys and metagenomics has revolutionized the study of environmental microbiology and microbial ecology. In particular, metagenomic analysis of nucleic acids provides direct access to the genomes of the “uncultivated majority.” Accelerated by advances in sequencing technology, microbiologists have discovered more novel phyla, classes, genera, and genes from microorganisms in the first decade and a half of the twenty-first century than since these “many very little living animalcules” were first discovered by van Leeuwenhoek (Table 1). The unsurpassed diversity of soils promises continued exploration of a range of industrial, agricultural, and environmental functions. The ability to explore soil microbial communities with increasing capacity offers the highest promise for answering many outstanding who, what, where, when, why, and with whom questions such as: Which microorganisms are linked to which soil habitats? How do microbial abundances change with changing edaphic conditions? How do microbial assemblages interact and influence one another synergistically or antagonistically? What is the full extent of soil microbial diversity, both functionally and phylogenetically? What are the dynamics of microbial communities in space and time? How sensitive are microbial communities to a changing climate? What is the role of horizontal gene transfer in the stability of microbial communities? Do highly diverse microbial communities confer resistance and resilience in soils?


Brazilian Journal of Microbiology | 2010

The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations

Tatiana Alves Rigamonte; Victor Satler Pylro; Gabriela Frois Duarte

More than 95 % short roots of most terrestrial plants are colonized by mycorrhizal fungi as soon as they emerge in the upper soil profiles. The establishment of mycorrhizal association involves profound morphological and physiological changes in root and fungus. It is affected by other rhizospheric microorganisms, specifically by the bacteria. Bacteria may have developed mechanisms of selective interaction with surrounding microorganisms, with neutral or positive effects on mycorrhizal associations, but negative effect on root pathogens in general. Because of the beneficial effect of bacteria on mycorrhizae, the concept of Mycorrhization Helper Bacteria (MHB) was created. Five main actions of MHB on mycorrhizae were proposed: in the receptivity of root to the mycobiont, in root-fungus recognition, in fungal growth, in the modification of rhizospheric soil and in the germination of fungal propagules. MHB appear to develop a gradation of specificity for the mycobiont, but little or no specificity for the host plant in symbiosis. One of the main groups of MHB is the fluorescent Pseudomonas, well represented in diversity and cell density studies of mycorrhizal associations. This review covers the activity of MHB in the establishment of ectomycorrhizae, taking as model the effects of Pseudomonas sp. described in scientific literature.


The ISME Journal | 2016

Ecological succession reveals potential signatures of marine–terrestrial transition in salt marsh fungal communities

Francisco Dini-Andreote; Victor Satler Pylro; Petr Baldrian; Jan Dirk van Elsas; Joana Falcão Salles

Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem.


PLOS Neglected Tropical Diseases | 2016

ZIKV – CDB: A Collaborative Database to Guide Research Linking SncRNAs and ZIKA Virus Disease Symptoms

Victor Satler Pylro; Francislon S. Oliveira; Daniel Kumazawa Morais; Sara Cuadros-Orellana; Fabiano Sviatopolk-Mirsky Pais; Julliane Dutra Medeiros; Juliana Assis Geraldo; Jack A. Gilbert; Angela Cristina Volpini; Gabriel da Rocha Fernandes

Background In early 2015, a ZIKA Virus (ZIKV) infection outbreak was recognized in northeast Brazil, where concerns over its possible links with infant microcephaly have been discussed. Providing a causal link between ZIKV infection and birth defects is still a challenge. MicroRNAs (miRNAs) are small noncoding RNAs (sncRNAs) that regulate post-transcriptional gene expression by translational repression, and play important roles in viral pathogenesis and brain development. The potential for flavivirus-mediated miRNA signalling dysfunction in brain-tissue development provides a compelling hypothesis to test the perceived link between ZIKV and microcephaly. Methodology/Principal Findings Here, we applied in silico analyses to provide novel insights to understand how Congenital ZIKA Syndrome symptoms may be related to an imbalance in miRNAs function. Moreover, following World Health Organization (WHO) recommendations, we have assembled a database to help target investigations of the possible relationship between ZIKV symptoms and miRNA-mediated human gene expression. Conclusions/Significance We have computationally predicted both miRNAs encoded by ZIKV able to target genes in the human genome and cellular (human) miRNAs capable of interacting with ZIKV genomes. Our results represent a step forward in the ZIKV studies, providing new insights to support research in this field and identify potential targets for therapy.


Extremophiles | 2010

Characterization of bacterial strains capable of desulphurisation in soil and sediment samples from Antarctica

Douglas Boniek; Débora Figueiredo; Victor Satler Pylro; Gabriela Frois Duarte

The presence of sulphur in fossil fuels and the natural environment justifies the study of sulphur-utilising bacterial species and genes involved in the biodesulphurisation process. Technology has been developed based on the natural ability of microorganisms to remove sulphur from polycyclic aromatic hydrocarbon chains. This biotechnology aims to minimise the emission of sulphur oxides into the atmosphere during combustion and prevent the formation of acid rain. In this study, the isolation and characterization of desulphurising microorganisms in rhizosphere and bulk soil samples from Antarctica that were either contaminated with oil or uncontaminated was described. The growth of selected isolates and their capacity to utilise sulphur based on the formation of the terminal product of desulphurisation via the 4S pathway, 2-hydroxybiphenyl, was analysed. DNA was extracted from the isolates and BOX-PCR and DNA sequencing were performed to obtain a genomic diversity profile of cultivable desulphurising bacterial species. Fifty isolates were obtained showing the ability of utilising dibenzothiophene as a substrate and sulphur source for maintenance and growth when plated on selective media. However, only seven genetically diverse isolates tested positive for sulphur removal using the Gibbs assay. DNA sequencing revealed that these isolates were related to the genera Acinetobacter and Pseudomonas.


PeerJ | 2016

Responses of microbial community from tropical pristine coastal soil to crude oil contamination

Daniel Kumazawa Morais; Victor Satler Pylro; Ian Clark; Penny R. Hirsch; Marcos Rogério Tótola

Brazilian offshore crude oil exploration has increased after the discovery of new reservoirs in the region known as pré-sal, in a depth of 7.000 m under the water surface. Oceanic islands near these areas represent sensitive environments, where changes in microbial communities due oil contamination could stand for the loss of metabolic functions, with catastrophic effects to the soil services provided from these locations. This work aimed to evaluate the effect of petroleum contamination on microbial community shifts (Archaea, Bacteria and Fungi) from Trindade Island coastal soils. Microcosms were assembled and divided in two treatments, control and contaminated (weathered crude oil at the concentration of 30 g kg−1), in triplicate. Soils were incubated for 38 days, with CO2 measurements every four hours. After incubation, the total DNA was extracted, purified and submitted for target sequencing of 16S rDNA, for Bacteria and Archaea domains and Fungal ITS1 region, using the Illumina MiSeq platform. Three days after contamination, the CO2 emission rate peaked at more than 20 × the control and the emissions remained higher during the whole incubation period. Microbial alpha-diversity was reduced for contaminated-samples. Fungal relative abundance of contaminated samples was reduced to almost 40% of the total observed species. Taxonomy comparisons showed rise of the Actinobacteria phylum, shifts in several Proteobacteria classes and reduction of the Archaea class Nitrososphaerales. This is the first effort in acquiring knowledge concerning the effect of crude oil contamination in soils of a Brazilian oceanic island. This information is important to guide any future bioremediation strategy that can be required.


PLOS ONE | 2016

Phenylketonuria and Gut Microbiota: A Controlled Study Based on Next-Generation Sequencing

Felipe Pinheiro de Oliveira; Roberta Hack Mendes; Priscila Caroline Thiago Dobbler; Volker Mai; Victor Satler Pylro; Sheldon Waugh; Filippo Pinto e Vairo; Lilia Farret Refosco; Luiz Fernando Wurdig Roesch; Ida Vanessa Doederlein Schwartz

Phenylketonuria (PKU) is an inborn error of metabolism associated with high blood levels of phenylalanine (Phe). A Phe-restricted diet supplemented with L-amino acids is the main treatment strategy for this disease; if started early, most neurological abnormalities can be prevented. The healthy human gut contains trillions of commensal bacteria, often referred to as the gut microbiota. The composition of the gut microbiota is known to be modulated by environmental factors, including diet. In this study, we compared the gut microbiota of 8 PKU patients on Phe-restricted dietary treatment with that of 10 healthy individuals. The microbiota were characterized by 16S rRNA sequencing using the Ion Torrent™ platform. The most dominant phyla detected in both groups were Bacteroidetes and Firmicutes. PKU patients showed reduced abundance of the Clostridiaceae, Erysipelotrichaceae, and Lachnospiraceae families, Clostridiales class, Coprococcus, Dorea, Lachnospira, Odoribacter, Ruminococcus and Veillonella genera, and enrichment of Prevotella, Akkermansia, and Peptostreptococcaceae. Microbial function prediction suggested significant differences in starch/glucose and amino acid metabolism between PKU patients and controls. Together, our results suggest the presence of distinct taxonomic groups within the gut microbiome of PKU patients, which may be modulated by their plasma Phe concentration. Whether our findings represent an effect of the disease itself, or a consequence of the modified diet is unclear.


International Journal of Evolutionary Biology | 2012

Detection of horizontal gene transfers from phylogenetic comparisons.

Victor Satler Pylro; Luciano de Souza Vespoli; Gabriela Frois Duarte; Karla S. C. Yotoko

Bacterial phylogenies have become one of the most important challenges for microbial ecology. This field started in the mid-1970s with the aim of using the sequence of the small subunit ribosomal RNA (16S) tool to infer bacterial phylogenies. Phylogenetic hypotheses based on other sequences usually give conflicting topologies that reveal different evolutionary histories, which in some cases may be the result of horizontal gene transfer events. Currently, one of the major goals of molecular biology is to understand the role that horizontal gene transfer plays in species adaptation and evolution. In this work, we compared the phylogenetic tree based on 16S with the tree based on dszC, a gene involved in the cleavage of carbon-sulfur bonds. Bacteria of several genera perform this survival task when living in environments lacking free mineral sulfur. The biochemical pathway of the desulphurization process was extensively studied due to its economic importance, since this step is expensive and indispensable in fuel production. Our results clearly show that horizontal gene transfer events could be detected using common phylogenetic methods with gene sequences obtained from public sequence databases.

Collaboration


Dive into the Victor Satler Pylro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcos Rogério Tótola

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriela Frois Duarte

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge