Daniel L. Flowers
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel L. Flowers.
International Journal of Engine Research | 2005
Aristotelis Babajimopoulos; Dionissios N. Assanis; Daniel L. Flowers; Salvador M. Aceves; Randy P. Hessel
Abstract Modelling the premixed charge compression ignition (PCCI) engine requires a balanced approach that captures both fluid motion as well as low- and high-temperature fuel oxidation. A fully integrated computational fluid dynamics (CFD) and chemistry scheme (i.e. detailed chemical kinetics solved in every cell of the CFD grid) would be the ideal PCCI modelling approach, but is computationally very expensive. As a result, modelling assumptions are required in order to develop tools that are computationally efficient, yet maintain an acceptable degree of accuracy. Multi-zone models have been previously shown accurately to capture geometry-dependent processes in homogeneous charge compression ignition (HCCI) engines. In the presented work, KIVA-3V is fully coupled with a multi-zone model with detailed chemical kinetics. Computational efficiency is achieved by utilizing a low-resolution discretization to solve detailed chemical kinetics in the multi-zone model compared with a relatively high-resolution CFD solution. The multi-zone model communicates with KIVA-3V at each computational timestep, as in the ideal fully integrated case. The composition of the cells, however, is mapped back and forth between KTVA-3V and the multi-zone model, introducing significant computational time savings. The methodology uses a novel re-mapping technique that can account for both temperature and composition non-uniformities in the cylinder. Validation cases were developed by solving the detailed chemistry in every cell of a KIVA-3V grid. The new methodology shows very good agreement with the detailed solutions in terms of ignition timing, burn duration, and emissions.
SAE transactions | 2000
Joel Martinez-Frias; Salvador M. Aceves; Daniel L. Flowers; J. Ray Smith; Robert W. Dibble
This work investigates a control system for HCCI engines, where thermal energy from exhaust gas recirculation (EGR) and compression work in the supercharger are either recycled or rejected as needed. HCCI engine operation is analyzed with a detailed chemical kinetics code, HCT (Hydrodynamics, Chemistry and Transport), that has been extensively modified for application to engines. HCT is linked to an optimizer that determines the operating conditions that result in maximum brake thermal efficiency, while meeting the restrictions of low NO{sub x} and peak cylinder pressure. The results show the values of the operating conditions that yield optimum efficiency as a function of torque and RPM. For zero torque (idle), the optimizer determines operating conditions that result in minimum fuel consumption. The optimizer is also used for determining the maximum torque that can be obtained within the operating restrictions of NO{sub x} and peak cylinder pressure. The results show that a thermally controlled HCCI engine can successfully operate over a wide range of conditions at high efficiency and low emissions.
Journal of Energy Resources Technology-transactions of The Asme | 2007
Joel Martinez-Frias; Salvador M. Aceves; Daniel L. Flowers
Homogeneous charge compression ignition (HCCI) is a new engine technology with fundamental differences over conventional engines. HCCI engines are intrinsically fuel flexible and can run on low-grade fuels as long as the fuel can be heated to the point of ignition. In particular, HCCI engines can run on “wet ethanol:” ethanol-in-water mixtures with high concentration of water. Considering that much of the energy required for processing fermented ethanol is spent in distillation and dehydration, direct use of wet ethanol in HCCI engines considerably shifts the energy balance in favor of ethanol. The results of the paper show that a HCCI engine with efficient heat recovery can operate on a mixture of 35% ethanol and 65% water by volume while achieving a high brake thermal efficiency (38.7%) and very low NOx (1.6 ppm, clean enough to meet any existing or oncoming emissions standards). Direct utilization of ethanol at a 35% volume fraction reduces water separation cost to only 3% of the energy of ethanol and coproducts (versus 37% for producing pure ethanol) and improves the net energy gain from 21% to 55% of the energy of ethanol and coproducts. Wet ethanol utilization is a promising concept that merits more detailed analysis and experimental evaluation. DOI: 10.1115/1.2794768
IEEE Transactions on Control Systems and Technology | 2009
Nick J. Killingsworth; Salvador M. Aceves; Daniel L. Flowers; Francisco Espinosa-Loza; Miroslav Krstic
Homogenous-charge-compression-ignition (HCCI) engines have the benefit of high efficiency with low emissions of NOx and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. However, because there is no direct-ignition trigger, control of ignition is inherently more difficult than in standard internal combustion engines. This difficulty necessitates that a feedback controller be used to keep the engine at a desired (efficient) setpoint in the face of disturbances. Because of the nonlinear autoignition process, the sensitivity of ignition changes with the operating point. Thus, gain scheduling is required to cover the entire operating range of the engine. Controller tuning can therefore be a time-intensive process. With the goal of reducing the time to tune the controller, we use extremum seeking (ES) to tune the parameters of various forms of combustion-timing controllers. In addition, in this paper, we demonstrate how ES can be used for the determination of an optimal combustion-timing setpoint on an experimental HCCI engine. The use of ES has the benefit of achieving both optimal setpoint (for maximizing the engine efficiency) and controller-parameter tuning tasks quickly.
Society of Automotive Engineers 2000 World Congress, Detroit, MI (US), 03/06/2000--03/09/2000 | 2000
Daniel L. Flowers; Salvador M. Aceves; Raymond F. Smith; John Torres; James Girard; Robert W. Dibble
Single cylinder engine experiments and chemical kinetic modeling have been performed to study the effect of variations in fuel, equivalence ratio, and intake charge temperature on the start of combustion and the heat release rate. Neat propane and a fuel blend of 15% dimethyl-ether in methane have been studied. The results demonstrate the role of these parameters on the start of combustion, efficiency, imep, and emissions. Single zone kinetic modeling results show the trends consistent with the experimental results.
SAE transactions | 2004
Salvador M. Aceves; Daniel L. Flowers; Francisco Espinosa-Loza; Joel Martinez-Frias; John E. Dec; Magnus Sjöberg; Robert W. Dibble; Randy P. Hessel
We have conducted a detailed numerical analysis of HCCI engine operation at low loads to investigate the sources of HC and CO emissions and the associated combustion inefficiencies. Engine performance and emissions are evaluated as fueling is reduced from typical HCCI conditions, with an equivalence ratio f = 0.26 to very low loads (f = 0.04). Calculations are conducted using a segregated multi-zone methodology and a detailed chemical kinetic mechanism for iso-octane with 859 chemical species. The computational results agree very well with recent experimental results. Pressure traces, heat release rates, burn duration, combustion efficiency and emissions of hydrocarbon, oxygenated hydrocarbon, and carbon monoxide are generally well predicted for the whole range of equivalence ratios. The computational model also shows where the pollutants originate within the combustion chamber, thereby explaining the changes in the HC and CO emissions as a function of equivalence ratio. The results of this paper contribute to the understanding of the high emission behavior of HCCI engines at low equivalence ratios and are important for characterizing this previously little explored, yet important range of operation.
Proceedings of the Combustion Institute | 2002
Daniel L. Flowers; Salvador M. Aceves; Joel Martinez-Frias; Robert W. Dibble
Homogeneous charge compression ignitions (HCCI) engines show promise as an alternative to Diesel engines, yet research remains: development of practical HCCI engines will be aided greatly by accurate modeling tools. A novel detailed chemical kinetic model that incorporates information from a computational fluid mechanics code has been developed to simulate HCCI combustion. This model very accurately predicts many aspects of the HCCI combustion process. High-resolution computational grids can be used for the fluid mechanics portion of the simulation, but the chemical kinetics portion of the simulation can be reduced to a handful of computational zones. (For all previous work, 10 zones have been used.) While, overall, this model has demonstrated a very good predictive capability for HCCI combustion, previous simulations using this model have tended to underpredict carbon monoxide emissions by an order of magnitude. A factor in the underprediction of carbon monoxide may be that all previous simulations have been conducted with 10 chemical kinetic zones. The chemistry that results in carbon monoxide emissions is very sensitive to small changes in temperature within the engine. The resolution in temperature is determined directly by the number of zones. This paper investigates how the number of zones (i.e., temperature resolution) affects the models prediction of hydrocarbon and carbon monoxide emissions in an HCCI engine. Simulations with 10, 20, and 40 chemical kinetic zones have been conducted using a detailed chemical kinetic mechanism (859 species, 3606 reactions) to simulate an iso-octane-fueled HCCI engine. The results show that 10 zones are adequate to resolve the hydrocarbon emissions, but a greater number of zones is required to resolve carbon monoxide emissions. Results are also presented that explore spatial sources of the exhaust emissions within the HCCI engine combustion chamber.
international conference on control applications | 2006
Nick J. Killingsworth; Salvador M. Aceves; Daniel L. Flowers; Miroslav Krstic
The homogenous charge compression ignition (HCCI) engine is an attractive technology because of its high efficiency and low emissions. However, HCCI lacks a direct combustion trigger making control of combustion timing challenging, especially during transients. To aid in HCCI engine control we present a simple model of the HCCI combustion process valid over a range of intake pressures, intake temperatures, equivalence ratios, and engine speeds. The model provides an estimate of the combustion timing on a cycle-by-cycle basis. An ignition threshold, which is a function of the in-cylinder motored temperature and pressure is used to predict start of combustion. This model allows the synthesis of nonlinear control laws, which can be utilized for control of an HCCI engine during transients.
SAE transactions | 2003
Daniel L. Flowers; Salvador M. Aceves; Joel Martinez-Frias; Randy P. Hessel; Robert W. Dibble
This research investigates how the handling of mixing and heat transfer in a multi-zone kinetic solver affects the prediction of carbon monoxide and hydrocarbon emissions for simulations of HCCI engine combustion. A detailed kinetics multi-zone model is now more closely coordinated with the KIVA3V computational fluid dynamics code for simulation of the compression and expansion processes. The fluid mechanics is solved with high spatial and temporal resolution (40,000 cells). The chemistry is simulated with high temporal resolution, but low spatial resolution (20 computational zones). This paper presents comparison of simulation results using this enhanced multi-zone model to experimental data from an isooctane HCCI engine. The chemical kinetics part of the simulation is handled using the multi-zone segregated solver method developed previously, but now KIVA3V is used to handle the fluid dynamics (convection, mass diffusion and heat transfer) for the entire compression and expansion processes. The results show that carbon monoxide and hydrocarbon emissions may be greatly influenced by the mixing and heat transfer during expansion. The prediction of HC and CO is significantly improved by inclusion of these effects in the simulation.
SAE World Congress & Exhibition | 2008
Randy P. Hessel; David E. Foster; Salvador M. Aceves; M. Lee Davisson; Francisco Espinosa-Loza; Daniel L. Flowers; William J. Pitz; John E. Dec; Magnus Sjöberg; Aristotelis Babajimopoulos
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and headgasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained. Results show that combustion is well characterized, as demonstrated by good agreement between calculated and measured pressure traces. In addition, excellent quantitative agreement between the model and experiment is achieved for specific exhaust species components, such as unburned fuel, formaldehyde, and many other intermediate hydrocarbon species. Some calculated trace intermediate hydrocarbon species do not agree as well with measurements, highlighting areas needing further investigation for understanding fundamental chemistry processes in HCCI engines.