Randy P. Hessel
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Randy P. Hessel.
International Journal of Engine Research | 2005
Aristotelis Babajimopoulos; Dionissios N. Assanis; Daniel L. Flowers; Salvador M. Aceves; Randy P. Hessel
Abstract Modelling the premixed charge compression ignition (PCCI) engine requires a balanced approach that captures both fluid motion as well as low- and high-temperature fuel oxidation. A fully integrated computational fluid dynamics (CFD) and chemistry scheme (i.e. detailed chemical kinetics solved in every cell of the CFD grid) would be the ideal PCCI modelling approach, but is computationally very expensive. As a result, modelling assumptions are required in order to develop tools that are computationally efficient, yet maintain an acceptable degree of accuracy. Multi-zone models have been previously shown accurately to capture geometry-dependent processes in homogeneous charge compression ignition (HCCI) engines. In the presented work, KIVA-3V is fully coupled with a multi-zone model with detailed chemical kinetics. Computational efficiency is achieved by utilizing a low-resolution discretization to solve detailed chemical kinetics in the multi-zone model compared with a relatively high-resolution CFD solution. The multi-zone model communicates with KIVA-3V at each computational timestep, as in the ideal fully integrated case. The composition of the cells, however, is mapped back and forth between KTVA-3V and the multi-zone model, introducing significant computational time savings. The methodology uses a novel re-mapping technique that can account for both temperature and composition non-uniformities in the cylinder. Validation cases were developed by solving the detailed chemistry in every cell of a KIVA-3V grid. The new methodology shows very good agreement with the detailed solutions in terms of ignition timing, burn duration, and emissions.
SAE transactions | 2004
Salvador M. Aceves; Daniel L. Flowers; Francisco Espinosa-Loza; Joel Martinez-Frias; John E. Dec; Magnus Sjöberg; Robert W. Dibble; Randy P. Hessel
We have conducted a detailed numerical analysis of HCCI engine operation at low loads to investigate the sources of HC and CO emissions and the associated combustion inefficiencies. Engine performance and emissions are evaluated as fueling is reduced from typical HCCI conditions, with an equivalence ratio f = 0.26 to very low loads (f = 0.04). Calculations are conducted using a segregated multi-zone methodology and a detailed chemical kinetic mechanism for iso-octane with 859 chemical species. The computational results agree very well with recent experimental results. Pressure traces, heat release rates, burn duration, combustion efficiency and emissions of hydrocarbon, oxygenated hydrocarbon, and carbon monoxide are generally well predicted for the whole range of equivalence ratios. The computational model also shows where the pollutants originate within the combustion chamber, thereby explaining the changes in the HC and CO emissions as a function of equivalence ratio. The results of this paper contribute to the understanding of the high emission behavior of HCCI engines at low equivalence ratios and are important for characterizing this previously little explored, yet important range of operation.
Combustion Theory and Modelling | 2009
Yu Shi; Randy P. Hessel; Rolf D. Reitz
There is a need to reduce the computational expense of practical multidimensional combustion simulations. Simulation of Homogeneous Charge Compression Ignition (HCCI) engine processes requires consideration of detailed chemistry in order to capture the ignition and combustion characteristics. Even with relatively coarse numerical meshes and reduced chemistry mechanisms, calculation times are still unacceptably long. For the simulation of Direct Injection (DI) engines, fine meshes are needed to achieve the resolution required by the spray and mixing models, and they are computationally expensive even with reduced chemistry. In addition, the increasing application of CFD for engine design optimization is pushing the demand to reduce computational time. In current design optimizations, depending on the size of the parametric space, hundreds of individual simulations are needed. This work presents an efficient Adaptive Multi-grid Chemistry (AMC) model that can be used in engine CFD codes for simulations of HCCI and DI engines with detailed chemistry. It was found that the number of cells computed with the chemistry solver can be reduced by two orders of magnitude for HCCI engines. The results predicted by the present KIVA AMC code are also consistent with those calculated by the original code using every cell. In the method, progressively coarser grids are used for cells with similar gas properties in the chemistry calculation (up to four neighbour levels) or in the global method, cells are grouped without regard for their locations in the cylinder. Averaged and gradient-preserving remapping techniques used in multi-zone engine simulations were also explored. A parametric study was conducted for determining the model variables, such as the degree of local homogeneity for the multi-grid solvers. The simulation results were compared with experimental data obtained from a Honda engine operated with n-heptane under HCCI conditions for which directly measured in-cylinder temperature and H2O mole fraction data are available. In addition, simulation results were found to agree well with experimental data from a DI diesel engine operated under PCCI conditions with ultra-high EGR rates. It was found that computer time was reduced by a factor of ten for HCCI cases and two to three for DI cases without losing prediction accuracy.
SAE transactions | 2003
Daniel L. Flowers; Salvador M. Aceves; Joel Martinez-Frias; Randy P. Hessel; Robert W. Dibble
This research investigates how the handling of mixing and heat transfer in a multi-zone kinetic solver affects the prediction of carbon monoxide and hydrocarbon emissions for simulations of HCCI engine combustion. A detailed kinetics multi-zone model is now more closely coordinated with the KIVA3V computational fluid dynamics code for simulation of the compression and expansion processes. The fluid mechanics is solved with high spatial and temporal resolution (40,000 cells). The chemistry is simulated with high temporal resolution, but low spatial resolution (20 computational zones). This paper presents comparison of simulation results using this enhanced multi-zone model to experimental data from an isooctane HCCI engine. The chemical kinetics part of the simulation is handled using the multi-zone segregated solver method developed previously, but now KIVA3V is used to handle the fluid dynamics (convection, mass diffusion and heat transfer) for the entire compression and expansion processes. The results show that carbon monoxide and hydrocarbon emissions may be greatly influenced by the mixing and heat transfer during expansion. The prediction of HC and CO is significantly improved by inclusion of these effects in the simulation.
SAE World Congress & Exhibition | 2008
Randy P. Hessel; David E. Foster; Salvador M. Aceves; M. Lee Davisson; Francisco Espinosa-Loza; Daniel L. Flowers; William J. Pitz; John E. Dec; Magnus Sjöberg; Aristotelis Babajimopoulos
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and headgasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained. Results show that combustion is well characterized, as demonstrated by good agreement between calculated and measured pressure traces. In addition, excellent quantitative agreement between the model and experiment is achieved for specific exhaust species components, such as unburned fuel, formaldehyde, and many other intermediate hydrocarbon species. Some calculated trace intermediate hydrocarbon species do not agree as well with measurements, highlighting areas needing further investigation for understanding fundamental chemistry processes in HCCI engines.
Journal of Propulsion and Power | 1995
Randy P. Hessel; Christopher J. Rutland
Intake flow for a dual intake valve diesel engine is modeled using moving valves and realistic geometries. The objectives are to show the importance of intake calculations instead of using assumed initial conditions, to supply spray and combustion models with more accurate initial conditions, and to demonstrate the use of multidimensional modeling to studying intake processes. Global simulation parameters are compared with experimental results and show good agreement. The intake process shows a 30% difference in mass flows and average swirl in opposite directions across the two intake valves. The effect of the intake process on the flowfield at the end of compression is examined. Modeling the intake flow results in swirl and turbulence characteristics that are quite different from those obtained by conventional methods in which compression stroke initial conditions are assumed.
Presented at: International Multidimensional Engine Modeling User's Group Meeting, Detroit, MI, United States, Apr 02 - Apr 06, 2006 | 2006
Randy P. Hessel; Neerav Abani; Salvador M. Aceves; Daniel L. Flowers
The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.
Combustion Theory and Modelling | 2011
Russell Whitesides; Randy P. Hessel; Daniel L. Flowers; Salvador M. Aceves
A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available – radial mass fraction data is less well predicted.
Archive | 2004
Rolf D. Reitz; Randy P. Hessel
Recent advances in computer CPU speed and engine model development make the use of multidimensional modeling increasingly attractive for engine designers and researchers seeking methods to reduce pollutant emissions, without sacrificing engine performance. Much progress has been made in engine submodel development in recent years, and modeling has been used to help explain aspects of engine performance and pollutant emissions trends. Factors including injection timing, injection pressure, injection rate-shape, combustion chamber design, boost pressure and EGR can now be explored computationally. A new development is the use of detailed models to help optimize engine design. With such a large number of engine parameters to investigate, it has been necessary to introduce efficient computational methodologies for the analysis of engine design configurations. Genetic-Algorithm-based (GA) search techniques have been demonstrated to be able to successfully follow a family of designs through a large search space to an optimum design. The GA method is applied together with multidimensional modeling in the present study to specify optimum injection rate-shape profiles for multiple injections in a heavy-duty diesel engine over a wide range of speeds and loads. In addition, related optimization studies are reviewed, including optimization of multiple injections with variations in EGR and boost pressure, optimization of intake flow swirl and tumble parameters for variable valve actuation applications, and optimization of the piston bowl geometry for a HSDI diesel engine.
International Journal of Engine Research | 2018
Zongyu Yue; Randy P. Hessel; Rolf D. Reitz
Real gas effects on combustion and emissions in internal combustion engines are investigated using three-dimensional computational fluid dynamics. The Peng–Robinson equation of state is implemented to describe pressure–volume–temperature relationships and to calculate thermodynamic properties and relevant partial derivatives. Four facilities are modeled, including non-reacting compression in a motoring engine, combustion in a conventional diesel combustion engine and in a reactivity controlled compression ignition engine, as well as for a non-reacting reflected wave in a shock tube. It is found that the real gas effects of gas mixtures in practical internal combustion engine operation are sensitive to the operating load and the amount of premixed fuel. Excellent agreement against experiments was found for engine simulations with the Peng–Robinson equation of state in terms of cylinder pressure and apparent heat release rate. However, discrepancies with predictions from the ideal gas law grow with increased load and larger amounts of premixed fuel. In particular, the predicted emissions of soot, NOx, CO and unburnt hydrocarbons show increasing sensitivity to real gas effects as a result of changes in combustion phasing. Fuel condensation is also modeled using a vapor–liquid phase equilibrium solver and significant dependency on the equation of state used is found. Therefore, it is recommended to include real gas effects in internal combustion engine modeling to capture combustion and emissions characteristics accurately. Additionally, the results emphasize the role of real gas effects on reaction rates. Shock tube simulations are used to demonstrate the importance of using the real gas equation of state in the interpretation of chemical kinetic measurements. Significantly different compressed gas temperatures behind the reflected shock are predicted when real gas effects are considered. This needs to be realized when developing chemical kinetic models and rate constants for engine applications from shock tube data.