Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel L. Marks is active.

Publication


Featured researches published by Daniel L. Marks.


Proceedings of the National Academy of Sciences of the United States of America | 2008

An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP

Gary A. Wayman; Monika A. Davare; Hideaki Ando; Dale A. Fortin; Olga Varlamova; Hai-Ying M. Cheng; Daniel L. Marks; Karl Obrietan; Thomas R. Soderling; Richard H. Goodman; Soren Impey

Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synapse growth and plasticity remain largely uncharacterized. Here, we show that microRNA 132 (miR132) is an activity-dependent rapid response gene regulated by the cAMP response element-binding (CREB) protein pathway. Introduction of miR132 into hippocampal neurons enhanced dendrite morphogenesis whereas inhibition of miR132 by 2′O-methyl RNA antagonists blocked these effects. Furthermore, neuronal activity inhibited translation of p250GAP, a miR132 target, and siRNA-mediated knockdown of p250GAP mimicked miR132-induced dendrite growth. Experiments using dominant-interfering mutants suggested that Rac signaling is downstream of miR132 and p250GAP. We propose that the miR132–p250GAP pathway plays a key role in activity-dependent structural and functional plasticity.


Journal of Biomedical Optics | 2007

Optical coherence tomography: a review of clinical development from bench to bedside

Adam M. Zysk; Freddy T. Nguyen; Amy L. Oldenburg; Daniel L. Marks; Stephen A. Boppart

Since its introduction, optical coherence tomography (OCT) technology has advanced from the laboratory bench to the clinic and back again. Arising from the fields of low coherence interferometry and optical time- and frequency-domain reflectometry, OCT was initially demonstrated for retinal imaging and followed a unique path to commercialization for clinical use. Concurrently, significant technological advances were brought about from within the research community, including improved laser sources, beam delivery instruments, and detection schemes. While many of these technologies improved retinal imaging, they also allowed for the application of OCT to many new clinical areas. As a result, OCT has been clinically demonstrated in a diverse set of medical and surgical specialties, including gastroenterology, dermatology, cardiology, and oncology, among others. The lessons learned in the clinic are currently spurring a new set of advances in the laboratory that will again expand the clinical use of OCT by adding molecular sensitivity, improving image quality, and increasing acquisition speeds. This continuous cycle of laboratory development and clinical application has allowed the OCT technology to grow at a rapid rate and represents a unique model for the translation of biomedical optics to the patient bedside. This work presents a brief history of OCT development, reviews current clinical applications, discusses some clinical translation challenges, and reviews laboratory developments poised for future clinical application.


Optics Letters | 2003

Engineered microsphere contrast agents for optical coherence tomography.

Tin Man Lee; Amy L. Oldenburg; Shoeb Sitafalwalla; Daniel L. Marks; Wei Luo; Farah Jean Jacques Toublan; Kenneth S. Suslick; Stephen A. Boppart

Contrast agents are utilized in virtually every imaging modality to enhance diagnostic capabilities. We introduce a novel class of optical contrast agent, namely, encapsulating microspheres, that are based not on fluorescence but on scattering nanoparticles within the shell or core. The agents are suitable for reflection- or scattering-based techniques such as optical coherence tomography, light microscopy, and reflectance confocal microscopy. We characterize the optical properties of gold-, melanin-, and carbon-shelled contrast agents and demonstrate enhancement of optical coherence tomography imaging after intravenous injection of such an agent into a mouse.


Breast Cancer Research and Treatment | 2004

Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer.

Stephen A. Boppart; Wei Luo; Daniel L. Marks; Keith W. Singletary

Diagnostic trends in medicine are being directed toward cellular and molecular processes, where treatment regimens are more amenable for cure. Optical imaging is capable of performing cellular and molecular imaging using the short wavelengths and spectroscopic properties of light. Diffuse optical tomography is an optical imaging technique that has been pursued as an alternative to X-ray mammography. While this technique permits non-invasive optical imaging of the whole breast, to date it is incapable of resolving features at the cellular level. Optical coherence tomography (OCT) is an emerging high-resolution biomedical imaging technology that for larger and undifferentiated cells can perform cellular-level imaging at the expense of imaging depth. OCT performs optical ranging in tissue and is analogous to ultrasound except reflections of near-infrared light are detected rather than sound. In this paper, an overview of the OCT technology is provided, followed by images demonstrating the feasibility of using OCT to image cellular features indicative of breast cancer. OCT images of a well-established carcinogen-induced rat mammary tumor model were acquired. Images from this common experimental model show strong correlation with corresponding histopathology. These results illustrate the potential of OCT for a wide range of basic research studies and for intra-operative image-guidance to identify foci of tumor cells within surgical margins during the surgical treatment of breast cancer.


Journal of Biomedical Optics | 2005

Optical probes and techniques for molecular contrast enhancement in coherence imaging.

Stephen A. Boppart; Amy L. Oldenburg; Chenyang Xu; Daniel L. Marks

Optics has played a key role in the rapidly developing field of molecular imaging. The spectroscopic nature and high-resolution imaging capabilities of light provide a means for probing biological morphology and function at the cellular and molecular levels. While the use of bioluminescent and fluorescent probes has become a mainstay in optical molecular imaging, a large number of other optical imaging modalities exist that can be included in this emerging field. In vivo imaging technologies such as optical coherence tomography and reflectance confocal microscopy have had limited use of molecular probes. In the last few years, novel nonfluorescent and nonbioluminescent molecular imaging probes have been developed that will initiate new directions in coherent optical molecular imaging. Classes of probes reviewed in this work include those that alter the local optical scattering or absorption properties of the tissue, those that modulate these local optical properties in a predictable manner, and those that are detected utilizing spectroscopic optical coherence tomography (OCT) principles. In addition to spectroscopic OCT, novel nonlinear interferometric imaging techniques have recently been developed to detect endogenous molecules. Probes and techniques designed for coherent molecular imaging are likely to improve the detection and diagnostic capabilities of OCT.


Optics Letters | 2004

Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography

Chenyang Xu; Jian Ye; Daniel L. Marks; Stephen A. Boppart

Optical coherence tomography (OCT) images of biological tissues often have low contrast. Spectroscopic optical coherence tomography (SOCT) methods have been developed to enhance contrast but remain limited because most tissues are not spectrally active in the frequency bands of laser sources commonly used in OCT. Near-infrared (NIR) dyes with absorption spectra features within the OCT source spectrum can be used for enhancing contrast in this situation. We introduce and demonstrate the use of NIR dyes as contrast agents for SOCT. Contrast-enhanced images are compared with fluorescence microscopy, demonstrating a link between SOCT and fluorescence imaging.


Nature | 2012

Multiscale gigapixel photography

David J. Brady; Michael E. Gehm; Ronald A. Stack; Daniel L. Marks; David S. Kittle; Dathon R. Golish; Esteban Vera; Steven D. Feller

Pixel count is the ratio of the solid angle within a camera’s field of view to the solid angle covered by a single detector element. Because the size of the smallest resolvable pixel is proportional to aperture diameter and the maximum field of view is scale independent, the diffraction-limited pixel count is proportional to aperture area. At present, digital cameras operate near the fundamental limit of 1–10 megapixels for millimetre-scale apertures, but few approach the corresponding limits of 1–100 gigapixels for centimetre-scale apertures. Barriers to high-pixel-count imaging include scale-dependent geometric aberrations, the cost and complexity of gigapixel sensor arrays, and the computational and communications challenge of gigapixel image management. Here we describe the AWARE-2 camera, which uses a 16-mm entrance aperture to capture snapshot, one-gigapixel images at three frames per minute. AWARE-2 uses a parallel array of microcameras to reduce the problems of gigapixel imaging to those of megapixel imaging, which are more tractable. In cameras of conventional design, lens speed and field of view decrease as lens scale increases, but with the experimental system described here we confirm previous theoretical results suggesting that lens speed and field of view can be scale independent in microcamera-based imagers resolving up to 50 gigapixels. Ubiquitous gigapixel cameras may transform the central challenge of photography from the question of where to point the camera to that of how to mine the data.


Optics Letters | 2002

Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography

Daniel L. Marks; Amy L. Oldenburg; J. Joshua Reynolds; Stephen A. Boppart

The axial resolution of optical coherence tomography images is primarily dependent on the bandwidth of the illumination source. Continuum generation is one way to generate the single-mode, high-bandwidth light needed for point illumination. We present an inexpensive and easy-to-implement augmentation to a Ti:sapphire laser that widens the bandwidth from 20 to over 200 nm with commerically available ultrahigh-numerical-aperture fiber. This technique can provide a readily available broad-bandwidth source for researchers and a practical enhancement to a fiber-optic optical coherence tomography system.


Journal of The Optical Society of America A-optics Image Science and Vision | 2013

Metamaterial apertures for coherent computational imaging on the physical layer

Guy Lipworth; Alex Mrozack; John Hunt; Daniel L. Marks; Tom Driscoll; David J. Brady; David R. Smith

We introduce the concept of a metamaterial aperture, in which an underlying reference mode interacts with a designed metamaterial surface to produce a series of complex field patterns. The resonant frequencies of the metamaterial elements are randomly distributed over a large bandwidth (18-26 GHz), such that the aperture produces a rapidly varying sequence of field patterns as a function of the input frequency. As the frequency of operation is scanned, different subsets of metamaterial elements become active, in turn varying the field patterns at the scene. Scene information can thus be indexed by frequency, with the overall effectiveness of the imaging scheme tied to the diversity of the generated field patterns. As the quality (Q-) factor of the metamaterial resonators increases, the number of distinct field patterns that can be generated increases-improving scene estimation. In this work we provide the foundation for computational imaging with metamaterial apertures based on frequency diversity, and establish that for resonators with physically relevant Q-factors, there are potentially enough distinct measurements of a typical scene within a reasonable bandwidth to achieve diffraction-limited reconstructions of physical scenes.


Journal of Biomedical Optics | 2006

High-resolution three-dimensional imaging of biofilm development using optical coherence tomography

Chuanwu Xi; Daniel L. Marks; Simon C. Schlachter; Wei Luo; Stephen A. Boppart

We describe the use of optical coherence tomography (OCT) for high-resolution, real-time imaging of three-dimensional structure and development of a Pseudomonas aeruginosa biofilm in a standard capillary flow-cell model. As the penetration depth of OCT can reach several millimeters in scattering samples, we are able to observe complete biofilm development on all surfaces of a 1 mm x 1 mm flow-cell. We find that biofilm growing at the bottom of the tube has more structural features including voids, outward projections, and microcolonies while the biofilm growing on the top of the tube is relatively flat and contains less structural features. Volume-rendered reconstructions of cross-sectional OCT images also reveal three-dimensional structural information. These three-dimensional OCT images are visually similar to biofilm images obtained with confocal laser scanning microscopy, but are obtained at greater depths. Based on the imaging capabilities of OCT and the biofilm imaging data obtained, OCT has potential to be used as a non-invasive, label-free, real-time, in-situ and/or in-vivo imaging modality for biofilm characterization.

Collaboration


Dive into the Daniel L. Marks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy L. Oldenburg

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Zysk

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge