Hui S. Son
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hui S. Son.
Optical Engineering | 2012
Daniel L. Marks; Hui S. Son; Jungsang Kim; David J. Brady
Multiscale designs greatly simplify the large-scale optics needed to realize the resolution of a large aperture. Unlike most monolithic lens systems, multiscale cameras have interdependencies between the optics at various scales. To realize a successful multiscale design, the relationships between microcamera scale and overall camera scale parameters must be understood. Starting with a specification of the multiscale camera, we present a simplified model that allows paraxial optical quantities to be estimated. Based on these quantities, a monocentric objective and a microcamera can be designed. An example of a practical design using spherical glass optics is presented.
Optics Express | 2011
Hui S. Son; Daniel L. Marks; Joonku Hahn; Jungsang Kim; David J. Brady
This paper presents a design strategy for close-packing circular finite-conjugate optics to create a spherical focal surface. Efficient packing of circles on a sphere is commonly referred to as the Tammes problem and various methods for packing optimization have been investigated, such as iterative point-repulsion simulations. The method for generating the circle distributions proposed here is based on a distorted icosahedral geodesic. This has the advantages of high degrees of symmetry, minimized variations in circle separations, and computationally inexpensive generation of configurations with N circles, where N is the number of vertices on the geodesic. These properties are especially beneficial for making a continuous focal surface and results show that circle packing densities near steady-state maximum values found with other methods can be achieved.
Applied Optics | 2013
Hui S. Son; Adam R. Johnson; Ronald A. Stack; Jeffrey M. Shaw; Paul O. McLaughlin; Daniel L. Marks; David J. Brady; Jungsang Kim
Recent developments in multiscale imaging systems have opened up the possibility for commercially viable wide-field gigapixel cameras. While multiscale design principles allow tremendous simplification of the optical design, they place increased emphasis on optomechanics and system level integration of the camera as a whole. In this paper we present the optomechanical design of a prototype two-gigapixel system (AWARE-2) that has been constructed and tested.
Applied Optics | 2014
Daniel L. Marks; Patrick Llull; Zachary F. Phillips; J. G. Anderson; Steven D. Feller; Esteban Vera; Hui S. Son; Seo Ho Youn; Jungsang Kim; Michael E. Gehm; David J. Brady; Jonathan M. Nichols; K. P. Judd; M. D. Duncan; James R. Waterman; Ronald A. Stack; Andy Johnson; R. Tennill; C. C. Olson
System requirements for many military electro-optic and IR camera systems reflect the need for both wide-field-of-view situational awareness as well as high-resolution imaging for target identification. In this work we present a new imaging system architecture designed to perform both functions simultaneously and the AWARE 10 camera as an example at visible wavelengths. We first describe the basic system architecture and user interface followed by a laboratory characterization of the system optical performance. We then describe a field experiment in which the camera was used to identify several maritime targets at varying range. The experimental results indicate that users of the system are able to correctly identify ~10 m targets at between 4 and 6 km with 70% accuracy.
Review of Scientific Instruments | 2013
David S. Kittle; Daniel L. Marks; Hui S. Son; Jungsang Kim; David J. Brady
The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of micro-cameras in a multiscale design to achieve gigapixel sampling at video rates. Alignment and optical testing of the micro-cameras is vital in compositing engines, which require pixel-level accurate mappings over the entire array of cameras. A testbed has been developed to automatically calibrate and measure the optical performance of the entire camera array. This testbed utilizes translation and rotation stages to project a ray into any micro-camera of the AWARE system. A spatial light modulator is projected through a telescope to form an arbitrary object space pattern at infinity. This collimated source is then reflected by an elevation stage mirror for pointing through the aperture of the objective into the micro-optics and eventually the detector of the micro-camera. Different targets can be projected with the spatial light modulator for measuring the modulation transfer function (MTF) of the system, fiducials in the overlap regions for registration and compositing, distortion mapping, illumination profiles, thermal stability, and focus calibration. The mathematics of the testbed mechanics are derived for finding the positions of the stages to achieve a particular incident angle into the camera, along with calibration steps for alignment of the camera and testbed coordinate axes. Measurement results for the AWARE-2 gigapixel camera are presented for MTF, focus calibration, illumination profile, fiducial mapping across the micro-camera for registration and distortion correction, thermal stability, and alignment of the camera on the testbed.
Optics & Photonics News | 2012
Daniel L. Marks; David S. Kittle; Hui S. Son; Seo Ho Youn; Steven D. Feller; Jungsang Kim; David J. Brady; Dathon R. Golish; Esteban Vera; Michael E. Gehm; Ronald A. Stack; Eric Tremblay; Joseph E. Ford
Gigapixel cameras have been confined to specialized applications such as aerial photography and astronomical observatories. A simplified architecture would better suit terrestrial imaging and reduce instrument cost and complexity. Our gigapixel AWARE camera is based on monocentric multiscale optical design principles that produce high-resolution images with a field of view (FOV) limited only by vignetting. This design allows resolution to approach the theoretical diffraction limits for a given entrance pupil size and FOV.
Optics Express | 2013
Hui S. Son; Daniel L. Marks; David J. Brady; Jungsang Kim
In our development of multiscale, gigapixel camera architectures, there is a need for an accurate three-dimensional position alignment of large monocentric lenses relative to hemispherical dome structures. In this work we describe a method for estimating the position of the objective lens in our AWARE-10 four-gigapixel camera using the retro-reflected signal of a custom-designed auto-stigmatic microscope. We show that although the physical constraints of the system limit the numerical aperture of the microscope probe beam to around 0.016, which results in poor sensitivity in the axial direction, the lateral sensitivity is more than sufficient to verify that the position of the objective is within optical tolerances.
Optics Express | 2014
Seo Ho Youn; Hui S. Son; Daniel L. Marks; Jeffrey M. Shaw; Paul O. McLaughlin; Steven D. Feller; David J. Brady; Jungsang Kim
Wide field-of-view gigapixel imaging systems capable of diffraction-limited resolution and video-rate acquisition have a broad range of applications, including sports event broadcasting, security surveillance, astronomical observation, and bioimaging. The complexity of the system integration of such devices demands precision optical components that are fully characterized and qualified before being integrated into the final system. In this work, we present component and assembly level characterizations of microcameras in our first gigapixel camera, the AWARE-2. Based on the results of these measurements, we revised the optical design and assembly procedures to construct the second generation system, the AWARE-2 Retrofit, which shows significant improvement in image quality.
Proceedings of SPIE | 2013
Daniel L. Marks; Seo Ho Youn; Hui S. Son; Jungsang Kim; David J. Brady
A microcamera is a relay lens paired with image sensors. Microcameras are grouped into arrays to relay overlapping views of a single large surface to the sensors to form a continuous synthetic image. The imaged surface may be curved or irregular as each camera may independently be dynamically focused to a different depth. Microcamera arrays are akin to microprocessors in supercomputers in that both join individual processors by an optoelectronic routing fabric to increase capacity and performance. A microcamera may image ten or more megapixels and grouped into an array of several hundred, as has already been demonstrated by the DARPA AWARE Wide-Field program with multiscale gigapixel photography. We adapt gigapixel microcamera array architectures to wide-field microscopy of irregularly shaped surfaces to greatly increase area imaging over 1000 square millimeters at resolutions of 3 microns or better in a single snapshot. The system includes a novel relay design, a sensor electronics package, and a FPGA-based networking fabric. Biomedical applications of this include screening for skin lesions, wide-field and resolution-agile microsurgical imaging, and microscopic cytometry of millions of cells performed in situ.
Proceedings of SPIE | 2013
Hui S. Son; Daniel L. Marks; Seo Ho Youn; David J. Brady; Jungsang Kim
Gigapixel cameras using lens arrays can contain hundreds to thousands of precisely positioned optical components and thus require fast, reliable methods for optical assembly and alignment verification. Our first one-gigapixel prototype camera (AWARE-2) and our four-gigapixel camera currently under development (AWARE-10) need active alignment and performance measurement procedures during assembly to ensure high quality images. Here we describe the methods that we have developed to ensure proper positioning of all optical components in the AWARE-10 system and the resulting optomechanical design decisions. AWARE cameras employ a single monocentric objective lens that is shared by an array of smaller ”micro-cameras”, each composed of a set of smaller scale lenses. In AWARE-10, approximately two thousand pieces of individual optics must be aligned to a high level of accuracy in order to attain the desired optical resolution over four gigapixels. To guarantee proper alignment before final assembly, the objective lens and the micro-optics are checked separately. Using tools including auto-stigmatic microscopy, slanted edge MTF measurements, and flat field measurements, we can confirm the correct alignment of individual components before assembly. Optomechanical designs that incorporate the application of these alignment tools are described.