Daniel Llewellyn Rathbun
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Llewellyn Rathbun.
international ieee/embs conference on neural engineering | 2015
Daniel Llewellyn Rathbun; Archana Jalligampala; Krunoslav Stingl; Eberhart Zrenner
After a general consideration of the various approaches to electrical stimulation of the retina, a thorough in vitro investigation of retinal responses to voltage-controlled stimuli is discussed within the context of the Alpha IMS subretinal implant (Retina Implant AG, Reutlingen, Germany). This is supplemented by a clinical trial interim report describing results obtained in 29 patients blind from retinitis pigmentosa who have received the Alpha IMS implant. It is concluded that the surgical procedure is safe and blind patients can benefit in visual tasks of daily life with this device that has meanwhile received approval for commercial use in Europe.
Journal of Neural Engineering | 2017
Archana Jalligampala; Sudarshan Sekhar; Eberhart Zrenner; Daniel Llewellyn Rathbun
To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa-using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4-5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (-2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations of retinal electrostimulation by establishing standard stimuli for each unique experimental condition.
Journal of Neural Engineering | 2017
Sudarshan Sekhar; Archana Jalligampala; Eberhart Zrenner; Daniel Llewellyn Rathbun
OBJECTIVE Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. APPROACH Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). MAIN RESULTS Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. SIGNIFICANCE This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off visual pathways.
bioRxiv | 2018
Henry J. Alitto; Daniel Llewellyn Rathbun; Jessica J. Vandeleest; Prescott C. Alexander; W. Martin Usrey
Retinal signals are transmitted to cortex via neurons in the lateral geniculate nucleus (LGN), where they are processed in burst or tonic response mode. Burst mode occurs when LGN neurons are sufficiently hyperpolarized for T-Type Ca2+ channels to de-inactivate, allowing them to open in response to a depolarization which can trigger a high-frequency sequence of Na+-based spikes (i.e. burst). In contrast, T-type channels are inactivated during tonic mode and do not contribute to spiking. Although burst mode is commonly associated with sleep and the disruption of retinogeniculate communication, bursts can also be triggered by visual stimulation, thereby transforming the retinal signals relayed to the cortex. To determine how burst mode affects retinogeniculate communication, we made recordings from monosynaptically connected retinal ganglion cells and LGN neurons in the cat during visual stimulation. Our results reveal a robust augmentation of retinal signals within the LGN during burst mode. Specifically, retinal spikes were more effective and often triggered multiple LGN spikes during periods likely to have increased T-Type Ca2+ activity. Consistent with the biophysical properties of T-Type Ca2+ channels, analysis revealed that effect magnitude was correlated with the duration of the preceding thalamic interspike interval and occurred even in the absence of classically defined bursts. Importantly, the augmentation of geniculate responses to retinal input was not associated with a degradation of visual signals. Together, these results indicate a graded nature of response mode and suggest that, under certain conditions, bursts facilitate the transmission of visual information to the cortex by amplifying retinal signals. Significance The thalamus is the gateway for retinal information traveling to the cortex. The lateral geniculate nucleus (LGN), like all thalamic nuclei, has two classically defined categories of spikes—tonic and burst—that differ in their underlying cellular mechanisms. Here we compare retinogeniculate communication during burst and tonic response modes. Our results show that retinogeniculate communication is enhanced during burst mode and visually evoked thalamic bursts, thereby augmenting retinal signals transmitted to cortex. Further, our results demonstrate that the influence of burst mode on retinogeniculate communication is graded and can be measured even in the absence of classically defined thalamic bursts.
Experimental Eye Research | 2018
Carina Kelbsch; Archana Jalligampala; Torsten Strasser; Paul Richter; Katarina Stingl; Christoph Braun; Daniel Llewellyn Rathbun; Eberhart Zrenner; Helmut Wilhelm; Barbara Wilhelm; Tobias Peters; Krunoslav Stingl
&NA; The purpose was to evaluate retinal function by measuring pupillary responses to sinusoidal transcorneal electrostimulation in healthy young human subjects. This work also translates data from analogous in vitro experiments and connects it to the pupillary responses obtained in human experiments. 14 healthy human subjects participated (4 males, 10 females); for the in vitro experiments, two male healthy mouse retinas (adult wild‐type C57B/6J) were used. Pupillary responses to sinusoidal transcorneal electrostimulation of varying stimulus carrier frequencies (10, 20 Hz; envelope frequency constantly kept at 1.2 Hz) and intensities (10, 20, 50 &mgr;A) were recorded and compared with those obtained with light stimulation (1.2 Hz sinusoidal blue, red light). A strong correlation between the sinusoidal stimulation (electrical as well as light) and the pupillary sinusoidal response was found. The difference between the lag of electrical and light stimulation allowed the estimation of an intensity threshold for pupillary responses to transcorneal electrostimulation (mean ± SD: 30 ± 10 &mgr;A (10 Hz); 38 ± 10 &mgr;A (20 Hz)). A comparison between the results of the two stimulation frequencies showed a not statistically significant smaller lag for 10 Hz (10 Hz: 633 ± 90 ms; 20 Hz: 725 ± 178 ms; 50 &mgr;A intensity). Analogous in vitro experiments on murine retinas indicated a selective stimulation of photoreceptors and bipolar cells (lower frequencies) and retinal ganglion cells (higher frequencies) and lower stimulation thresholds for the retinal network with sinusoidal compared to pulsatile stimulation – emphasizing that sinusoidal waveforms are well‐suited to our purposes. We demonstrate that pupillary responses to sinusoidal transcorneal electrostimulation are measurable as an objective marker in healthy young subjects, even at very low stimulus intensities. By using this unique approach, we unveil the potential for an estimation of the individual intensity threshold and a selective activation of different retinal cell types in humans by varying the stimulation frequency. This technique may have broad clinical utility as well as specific relevance in the monitoring of patients with hereditary retinal disorders, especially as implemented in study protocols for novel therapies, e.g. retinal prostheses or gene therapies. HighlightsFunctional evaluation of the retina in humans based on pupillary responses.New paradigm for transcorneal sinusoidal electrical stimulation.Method for an easy estimation of individual thresholds for pupillary responses.Possibility for a selective activation of different retinal cell types.Verification of sinusoidal stimulation in animal in vitro model.
international ieee/embs conference on neural engineering | 2015
Archana Jalligampala; Eberhart Zrenner; Daniel Llewellyn Rathbun
Despite considerable advances in the field of retinal prosthetics during recent years, significant variability remains in the quality of vision restoration for patients. One target for refinement of prosthetic vision is to selectively activate one or more of the ~20 parallel channels of visual information that are established in the retina and subsequently travel to different visual networks in the brain. These different channels result in different spike train response patterns in the retinal ganglion cells (RGCs) which constitute the sole output neuron population of the retina. Here we demonstrate, however, that the genuine visual response patterns of retinal ganglion cells can be altered by electrical stimulation, suggesting that the encoding of visual stimuli by retinal prosthesis devices may require consideration of stimulation-induced changes in the retina. Specifically, we demonstrate that ON and OFF response amplitudes increase significantly after stimulation. This leads to changes in the relative weighting of ON and OFF response types on a cell by cell basis - fundamentally altering the visual stimulus encoded by some RGCs.
Journal of Neural Engineering | 2016
Sudarshan Sekhar; Archana Jalligampala; Eberhart Zrenner; Daniel Llewellyn Rathbun
Investigative Ophthalmology & Visual Science | 2016
Sudarshan Sekhar; Archana Jalligampala; Eberhart Zrenner; Daniel Llewellyn Rathbun
Investigative Ophthalmology & Visual Science | 2016
Archana Jalligampala; Eberhart Zrenner; Daniel Llewellyn Rathbun
Archive | 2015
Henry J. Alitto; Theodore G. Weyand; W. Martin Usrey; Daniel Llewellyn Rathbun; David K. Warland; Jonathan Y. Shih; Craig A. Atencio; Christoph E. Schreiner