Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel M. Camac is active.

Publication


Featured researches published by Daniel M. Camac.


Journal of Medicinal Chemistry | 2014

Discovery and Preclinical Characterization of the Cyclopropylindolobenzazepine BMS-791325, A Potent Allosteric Inhibitor of the Hepatitis C Virus NS5B Polymerase.

Robert G. Gentles; Min Ding; John A. Bender; Carl P. Bergstrom; Katharine A. Grant-Young; Piyasena Hewawasam; Thomas William Hudyma; Scott Martin; Andrew Nickel; Alicia Regueiro-Ren; Yong Tu; Zhong Yang; Kap-Sun Yeung; Xiaofan Zheng; Sam T. Chao; Jung-Hui Sun; Brett R. Beno; Daniel M. Camac; Mian Gao; Paul E. Morin; Steven Sheriff; Jeff Tredup; John Wan; Mark R. Witmer; Dianlin Xie; Umesh Hanumegowda; Jay O. Knipe; Kathy Mosure; Kenneth S. Santone; Dawn D. Parker

Described herein are structure-activity relationship studies that resulted in the optimization of the activity of members of a class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors. Subsequent iterations of analogue design and syntheses successfully addressed off-target activities, most notably human pregnane X receptor (hPXR) transactivation, and led to significant improvements in the physicochemical properties of lead compounds. Those analogues exhibiting improved solubility and membrane permeability were shown to have notably enhanced pharmacokinetic profiles. Additionally, a series of alkyl bridged piperazine carboxamides was identified as being of particular interest, and from which the compound BMS-791325 (2) was found to have distinguishing antiviral, safety, and pharmacokinetic properties that resulted in its selection for clinical evaluation.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and SAR of indole-and 7-azaindole-1,3-dicarboxamide hydroxyethylamine inhibitors of BACE-1.

Mendi A. Higgins; F. Christopher Zusi; Yunhui Zhang; Michael F. Dee; Michael F. Parker; Jodi K. Muckelbauer; Daniel M. Camac; Paul E. Morin; Vidhyashankar Ramamurthy; Andrew J. Tebben; Kimberley A. Lentz; James E. Grace; Jovita Marcinkeviciene; Lisa M. Kopcho; Catherine R. Burton; Donna M. Barten; Jeremy H. Toyn; Jere E. Meredith; Charles F. Albright; Joanne J. Bronson; John E. Macor; Lorin A. Thompson

Heterocyclic replacement of the isophthalamide phenyl ring in hydroxyethylamine (HEA) BACE-1 inhibitors was explored. A variety of indole-1,3-dicarboxamide HEAs exhibited potent BACE-1 enzyme inhibition, but displayed poor cellular activity. Improvements in cellular activity and aspartic protease selectivity were observed for 7-azaindole-1,3-dicarboxamide HEAs. A methylprolinol-bearing derivative (10n) demonstrated robust reductions in rat plasma Aβ levels, but did not lower rat brain Aβ due to poor central exposure. The same analog exhibited a high efflux ratio in a bidirectional Caco-2 assay and was likely a substrate of the efflux transporter P-glycoprotein. X-ray crystal structures are reported for two indole HEAs in complex with BACE-1.


Journal of Medicinal Chemistry | 2012

Acyl guanidine inhibitors of β-secretase (BACE-1): optimization of a micromolar hit to a nanomolar lead via iterative solid- and solution-phase library synthesis.

Samuel W. Gerritz; Weixu Zhai; Shuhao Shi; Shirong Zhu; Jeremy H. Toyn; Jere E. Meredith; Lawrence G. Iben; Catherine R. Burton; Charles F. Albright; Andrew C. Good; Andrew J. Tebben; Jodi K. Muckelbauer; Daniel M. Camac; William J. Metzler; Lynda S. Cook; Ramesh Padmanabha; Kimberley A. Lentz; Michael J. Sofia; Michael A. Poss; John E. Macor; Lorin A. Thompson

This report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation-π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent. Following subcutaneous administration in rats, an acyl guanidine inhibitor with single-digit nanomolar activity in cells afforded good plasma exposures and a dose-dependent reduction in plasma Aβ levels, but poor brain exposure was observed (likely due to Pgp-mediated efflux), and significant reductions in brain Aβ levels were not obtained.


Bioorganic & Medicinal Chemistry Letters | 2011

Syntheses and initial evaluation of a series of indolo-fused heterocyclic inhibitors of the polymerase enzyme (NS5B) of the hepatitis C virus.

Xiaofan Zheng; Thomas W. Hudyma; Scott W. Martin; Carl P. Bergstrom; Min Ding; Feng He; Jeffrey L. Romine; Michael A. Poss; John F. Kadow; John Wan; Mark R. Witmer; Paul E. Morin; Daniel M. Camac; Steven Sheriff; Brett R. Beno; Karen Rigat; Ying-Kai Wang; Robert A. Fridell; Julie A. Lemm; Dike Qiu; Mengping Liu; Stacey Voss; Lenore Pelosi; Susan B. Roberts; Min Gao; Jay O. Knipe; Robert G. Gentles

Herein, we present initial SAR studies on a series of bridged 2-arylindole-based NS5B inhibitors. The introduction of bridging elements between the indole N1 and the ortho-position of the 2-aryl moiety resulted in conformationally constrained heterocycles that possess multiple additional vectors for further exploration. The binding mode and pharmacokinetic (PK) properties of select examples, including: 13-cyclohexyl-6-oxo-6,7-dihydro-5H-indolo[2,1-d][1,4]benzodiazepine-10-carboxylic acid (7) (IC(50)=0.07 μM, %F=18), are reported.


Bioorganic & Medicinal Chemistry Letters | 2008

Pyridine amides as potent and selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1

Haixia Wang; Zheming Ruan; James J. Li; Ligaya M. Simpkins; Rebecca A. Smirk; Shung C. Wu; Robert Hutchins; David S. Nirschl; Katy Van Kirk; Christopher B. Cooper; James C. Sutton; Zhengping Ma; Rajasree Golla; Ramakrishna Seethala; Mary Ellen K. Salyan; Akbar Nayeem; Stanley R. Krystek; Steven Sheriff; Daniel M. Camac; Paul E. Morin; Brian Carpenter; Jeffrey A. Robl; Robert Zahler; David A. Gordon; Lawrence G. Hamann

Several series of pyridine amides were identified as selective and potent 11beta-HSD1 inhibitors. The most potent inhibitors feature 2,6- or 3,5-disubstitution on the pyridine core. Various linkers (CH(2)SO(2), CH(2)S, CH(2)O, S, O, N, bond) between the distal aryl and central pyridyl groups are tolerated, and lipophilic amide groups are generally favored. On the distal aryl group, a number of substitutions are well tolerated. A crystal structure was obtained for a complex between 11beta-HSD1 and the most potent inhibitor in this series.


Archives of Biochemistry and Biophysics | 2003

Comparative studies of active site–ligand interactions among various recombinant constructs of human β-amyloid precursor protein cleaving enzyme

Lisa M. Kopcho; Jianhong Ma; Jovita Marcinkeviciene; Zhihong Lai; Mark R. Witmer; Janet Cheng; Joseph Yanchunas; Jeffrey Tredup; Martin J. Corbett; Deepa Calambur; Michael Wittekind; Manjula Paruchuri; Dharti Kothari; Grace Lee; Subinay Ganguly; Vidhyashankar Ramamurthy; Paul E. Morin; Daniel M. Camac; Robert W King; Amy L Lasut; O Harold Ross; Milton C Hillman; Barbara Fish; Keqiang Shen; Randine L. Dowling; Young Bun Kim; Nilsa R. Graciani; Dale Collins; Andrew P. Combs; Henry J. George

Amyloid precursor protein (APP) cleaving enzyme (BACE) is the enzyme responsible for beta-site cleavage of APP, leading to the formation of the amyloid-beta peptide that is thought to be pathogenic in Alzheimers disease (AD). Hence, BACE is an attractive pharmacological target, and numerous research groups have begun searching for potent and selective inhibitors of this enzyme as a potential mechanism for therapeutic intervention in AD. The mature enzyme is composed of a globular catalytic domain that is N-linked glycosylated in mammalian cells, a single transmembrane helix that anchors the enzyme to an intracellular membrane, and a short C-terminal domain that extends outside the phospholipid bilayer of the membrane. Here we have compared the substrate and active site-directed inhibitor binding properties of several recombinant constructs of human BACE. The constructs studied here address the importance of catalytic domain glycosylation state, inclusion of domains other than the catalytic domain, and incorporation into a membrane bilayer on the interactions of the enzyme active site with peptidic ligands. We find no significant differences in ligand binding properties among these various constructs. These data demonstrate that the nonglycosylated, soluble catalytic domain of BACE faithfully reflects the ligand binding properties of the full-length mature enzyme in its natural membrane environment. Thus, the use of the nonglycosylated, soluble catalytic domain of BACE is appropriate for studies aimed at understanding the determinants of ligand recognition by the enzyme active site.


Bioorganic & Medicinal Chemistry Letters | 2011

Monosubstituted γ-lactam and conformationally constrained 1,3-diaminopropan-2-ol transition-state isostere inhibitors of β-secretase (BACE)

Kenneth M. Boy; Jason M. Guernon; Jianliang Shi; Jeremy H. Toyn; Jere E. Meredith; Donna M. Barten; Catherine R. Burton; Charles F. Albright; Jovita Marcinkeviciene; Andrew C. Good; Andrew J. Tebben; Jodi K. Muckelbauer; Daniel M. Camac; Kimberley A. Lentz; Joanne J. Bronson; Richard E. Olson; John E. Macor; Lorin A. Thompson

The synthesis, evaluation, and structure-activity relationships of a class of γ-lactam 1,3-diaminopropan-2-ol transition-state isostere inhibitors of BACE are discussed. Two strategies for optimizing lead compound 1a are presented. Reducing the overall size of the inhibitors resulted in the identification of γ-lactam 1i, whereas the introduction of conformational constraint on the prime-side of the inhibitor generated compounds such as the 3-hydroxypyrrolidine inhibitor 28n. The full in vivo profile of 1i in rats and 28n in Tg 2576 mice is presented.


Journal of Medicinal Chemistry | 2014

Discovery of the CCR1 antagonist, BMS-817399, for the treatment of rheumatoid arthritis.

Joseph B. Santella; Daniel S. Gardner; John V. Duncia; Hong Wu; Murali T. G. Dhar; Cullen L. Cavallaro; Andrew J. Tebben; Percy H. Carter; Joel C. Barrish; Melissa Yarde; Stephanie W. Briceno; Mary Ellen Cvijic; R. Robert Grafstrom; Richard Liu; Sima R. Patel; Andrew Watson; Guchen Yang; Anne Rose; Rodney Vickery; Janet Caceres-Cortes; Christian Caporuscio; Daniel M. Camac; Javed Khan; Yongmi An; William R. Foster; Paul Davies; John Hynes

High-affinity, functionally potent, urea-based antagonists of CCR1 have been discovered. Modulation of PXR transactivation has revealed the selective and orally bioavailable CCR1 antagonist BMS-817399 (29), which entered clinical trials for the treatment of rheumatoid arthritis.


ACS Medicinal Chemistry Letters | 2014

Optimization of 1,2,4-Triazolopyridines as Inhibitors of Human 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD-1).

Jun Li; Lawrence J. Kennedy; Haixia Wang; James J. Li; Steven J. Walker; Zhenqiu Hong; Stephen P. O’Connor; Akbar Nayeem; Daniel M. Camac; Paul E. Morin; Steven Sheriff; Mengmeng Wang; Timothy W. Harper; Rajasree Golla; Ramakrishna Seethala; Thomas Harrity; Randolph Ponticiello; Nathan Morgan; Joseph R. Taylor; Rachel Zebo; David A. Gordon; Jeffrey A. Robl

Small alkyl groups and spirocyclic-aromatic rings directly attached to the left side and right side of the 1,2,4-triazolopyridines (TZP), respectively, were found to be potent and selective inhibitors of human 11β-hydroxysteroid dehydrogenase-type 1 (11β-HSD-1) enzyme. 3-(1-(4-Chlorophenyl)cyclopropyl)-8-cyclopropyl-[1,2,4]triazolo[4,3-a]pyridine (9f) was identified as a potent inhibitor of the 11β-HSD-1 enzyme with reduced Pregnane-X receptor (PXR) transactivation activity. The binding orientation of this TZP series was revealed by X-ray crystallography structure studies.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and in vivo evaluation of cyclic diaminopropane BACE-1 inhibitors.

Lorin A. Thompson; Jianliang Shi; Carl P. Decicco; Andrew J. Tebben; Richard E. Olson; Kenneth M. Boy; Jason M. Guernon; Andrew Good; Ann Y. Liauw; Changsheng Zheng; Robert A. Copeland; Andrew P. Combs; George L. Trainor; Daniel M. Camac; Jodi K. Muckelbauer; Kimberley A. Lentz; James E. Grace; Catherine R. Burton; Jeremy H. Toyn; Donna M. Barten; Jovita Marcinkeviciene; Jere E. Meredith; Charles F. Albright; John E. Macor

The synthesis, evaluation, and structure-activity relationships of a set of related constrained diaminopropane inhibitors of BACE-1 are described. The full in vivo profile of an optimized inhibitor in both normal and P-gp deficient mice is compared with data generated in normal rats.

Collaboration


Dive into the Daniel M. Camac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge