Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel M. DeLaughter is active.

Publication


Featured researches published by Daniel M. DeLaughter.


Developmental Cell | 2016

Single-Cell Resolution of Temporal Gene Expression during Heart Development

Daniel M. DeLaughter; Alexander G. Bick; Hiroko Wakimoto; David M. McKean; Joshua M. Gorham; Irfan S. Kathiriya; John T. Hinson; Jason Homsy; Jesse M. Gray; William T. Pu; Benoit G. Bruneau; Jonathan G. Seidman; Christine E. Seidman

Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease.


Birth Defects Research Part A-clinical and Molecular Teratology | 2011

What chick and mouse models have taught us about the role of the endocardium in congenital heart disease.

Daniel M. DeLaughter; Leshana Saint-Jean; H. Scott Baldwin; Joey V. Barnett

Specific cell and tissue interactions drive the formation and function of the vertebrate cardiovascular system. Although much attention has been focused on the muscular components of the developing heart, the endocardium plays a key role in the formation of a functioning heart. Endocardial cells exhibit heterogeneity that allows them to participate in events such as the formation of the valves, septation of the outflow tract, and trabeculation. Here we review, the contributions of the endocardium to cardiovascular development and outline useful approaches developed in the chick and mouse that have revealed endocardial cell heterogeneity, the signaling molecules that direct endocardial cell behavior, and how these insights have contributed to our understanding of cardiovascular development and disease.


Developmental Dynamics | 2010

Regulation of heart valve morphogenesis by Eph receptor ligand, ephrin-A1.

Leslie Frieden; Todd A. Townsend; David B. Vaught; Daniel M. DeLaughter; Yoonha Hwang; Joey V. Barnett; Jin Chen

Disease or malformation of heart valves is one of the leading causes of morbidity and mortality in both children and adults. These congenital anomalies can remain undetected until cardiac function is compromised, making it important to understand the underlying nature of these disorders. Here we show that ephrin‐A1, a ligand for class A Eph receptor tyrosine kinases, regulates cardiac valve formation. Exogenous ephrin‐A1‐Fc or overexpression of ephrin‐A1 in the heart inhibits epithelial‐to‐mesenchymal transformation (EMT) in chick atrioventricular cushion explants. In contrast, overexpression of wild‐type EphA3 receptor promotes EMT via a kinase‐dependent mechanism. To analyze ephrin‐A1 in vivo, we generated an ephrin‐A1 knockout mouse through gene targeting. Ephrin‐A1 null animals are viable but exhibit impaired cardiac function. Loss of ephrin‐A1 results in thickened aortic and mitral valves in newborn and adult animals. Analysis of early embryonic hearts revealed increased cellularity in outflow tract endocardial cushions and elevated mesenchymal marker expression, suggesting that excessive numbers of cells undergo EMT. Taken together, these data indicate that ephrin‐A1 regulates cardiac valve development, making ephrin‐A1‐deficient mice a novel model for congenital heart defects. Developmental Dynamics 239:3226–3234, 2010.


Cellular Signalling | 2012

Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC.

Todd A. Townsend; Jamille Y. Robinson; Tam How; Daniel M. DeLaughter; Gerard C. Blobe; Joey V. Barnett

An early event in heart valve formation is the epithelial-mesenchymal transformation (EMT) of a subpopulation of endothelial cells in specific regions of the heart tube, the endocardial cushions. The Type III TGFβ receptor (TGFβR3) is required for TGFβ2- or BMP-2-stimulated EMT in atrioventricular endocardial cushion (AVC) explants in vitro but the mediators downstream of TGFβR3 are not well described. Using AVC and ventricular explants as an in vitro assay, we found an absolute requirement for specific TGFβR3 cytoplasmic residues, GAIP-interacting protein, C terminus (GIPC), and specific Activin Receptor-Like Kinases (ALK)s for TGFβR3-mediated EMT when stimulated by TGFβ2 or BMP-2. The introduction of TGFβR3 into nontransforming ventricular endocardial cells, followed by the addition of either TGFβ2 or BMP-2, results in EMT. TGFβR3 lacking the entire cytoplasmic domain, or only the 3C-terminal amino acids that are required to bind GIPC, fails to support EMT in response to TGFβ2 or BMP-2. Overexpression of GIPC in AVC endocardial cells enhanced EMT while siRNA-mediated silencing of GIPC in ventricular cells overexpressing TGFβR3 significantly inhibited EMT. Targeting of specific ALKs by siRNA revealed that TGFβR3-mediated EMT requires ALK2 and ALK3, in addition to ALK5, but not ALK4 or ALK6. Taken together, these data identify GIPC, ALK2, ALK3, and ALK5 as signaling components required for TGFβR3-mediated endothelial cell EMT.


Journal of Molecular and Cellular Cardiology | 2013

Spatial Transcriptional Profile of the Chick and Mouse Endocardial Cushions Identify Novel Regulators of Endocardial EMT in vitro

Daniel M. DeLaughter; Danos C. Christodoulou; Jamille Y. Robinson; Christine E. Seidman; H. Scott Baldwin; Jonathan G. Seidman; Joey V. Barnett

Valvular Interstitial Cells (VICs) are a common substrate for congenital and adult heart disease yet the signaling mechanisms governing their formation during early valvulogenesis are incompletely understood. We developed an unbiased strategy to identify genes important in endocardial epithelial-to-mesenchymal transformation (EMT) using a spatial transcriptional profile. Endocardial cells overlaying the cushions of the atrioventricular canal (AVC) and outflow tract (OFT) undergo an EMT to yield VICs. RNA sequencing (RNA-seq) analysis of gene expression between AVC, OFT, and ventricles (VEN) isolated from chick and mouse embryos at comparable stages of development (chick HH18; mouse E11.0) was performed. EMT occurs in the AVC and OFT cushions, but not VEN at this time. 198 genes in the chick (n=1) and 105 genes in the mouse (n=2) were enriched 2-fold in the cushions. Gene regulatory networks (GRN) generated from cushion-enriched gene lists confirmed TGFβ as a nodal point and identified NF-κB as a potential node. To reveal previously unrecognized regulators of EMT four candidate genes, Hapln1, Id1, Foxp2, and Meis2, and a candidate pathway, NF-κB, were selected. In vivo spatial expression of each gene was confirmed by in situ hybridization and a functional role for each in endocardial EMT was determined by siRNA knockdown in a collagen gel assay. Our spatial-transcriptional profiling strategy yielded gene lists which reflected the known biology of the system. Further analysis accurately identified and validated previously unrecognized novel candidate genes and the NF-κB pathway as regulators of endocardial cell EMT in vitro.


Nature | 2017

IL11 is a crucial determinant of cardiovascular fibrosis

Sebastian Schafer; Sivakumar Viswanathan; Anissa Widjaja; Wei-Wen Lim; Aida Moreno-Moral; Daniel M. DeLaughter; Benjamin Ng; Giannino Patone; Kingsley Chow; Ester Khin; Jessie Tan; Sonia Chothani; Lei Ye; Owen J. L. Rackham; Nicole Shi Jie Ko; Norliza E. Sahib; Chee Jian Pua; Nicole T. G. Zhen; Chen Xie; Mao Wang; Henrike Maatz; Shiqi Lim; Kathrin Saar; Susanne Blachut; Enrico Petretto; Sabine Schmidt; Tracy Putoczki; Nuno Guimarães-Camboa; Hiroko Wakimoto; Sebastiaan van Heesch

Fibrosis is a common pathology in cardiovascular disease. In the heart, fibrosis causes mechanical and electrical dysfunction and in the kidney, it predicts the onset of renal failure. Transforming growth factor β1 (TGFβ1) is the principal pro-fibrotic factor, but its inhibition is associated with side effects due to its pleiotropic roles. We hypothesized that downstream effectors of TGFβ1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging–genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFβ1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases.


Biomaterials | 2014

Myocardial contraction and hyaluronic acid mechanotransduction in epithelial-to-mesenchymal transformation of endocardial cells

Mary Kathryn Sewell-Loftin; Daniel M. DeLaughter; Jon R. Peacock; Christopher B. Brown; H. Scott Baldwin; Joey V. Barnett; W. David Merryman

Epithelial-to-mesenchymal transition (EMT) of endocardial cells is a critical initial step in the formation of heart valves. The collagen gel in vitro model has provided significant information on the role of growth factors regulating EMT but has not permitted investigation of mechanical factors. Therefore we sought to develop a system to probe the effects of mechanical inputs on endocardial EMT by incorporating hyaluronic acid (HA), the primary component of endocardial cushions in developing heart valves, into the gel assay. This was achieved using a combination collagen and crosslinkable methacrylated HA hydrogel (Coll-MeHA). Avian atrioventricular canal explants on Coll-MeHA gels showed increased numbers of transformed cells. Analysis of the mechanical properties of Coll-MeHA gels shows that stiffness does not directly affect EMT. Hydrogel deformation from the beating myocardium of explants directly led to higher levels of regional gel deformation and larger average strain magnitudes associated with invaded cells on Coll-MeHA gels. Inhibition of this contraction reduced EMT on all gel types, although to a lesser extent on Coll-MeHA gels. Using the system we have developed, which permits the manipulation of mechanical factors, we have demonstrated that active mechanical forces play a role in the regulation of endocardial EMT.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter

Alexander G. Bick; Hiroko Wakimoto; Kimberli J. Kamer; Yasemin Sancak; Olga Goldberger; Anna Axelsson; Daniel M. DeLaughter; Joshua M. Gorham; Vamsi K. Mootha; Jonathan G. Seidman; Christine E. Seidman

Significance Hypertension increases the risk for development of abdominal aortic aneurysms, a silent pathology that is prone to rupture and cause sudden cardiac death. Male gender, smoking, and hypertension appear to increase risk for development of abdominal aortic aneurysms by provoking oxidative stress responses in cardiovascular tissues. Here we uncovered unexpected linkages between the calcium-sensing regulatory subunit MICU2 of the mitochondrial calcium uniporter and stress responses. We show that naive Micu2−/− mice had abnormalities of cardiac relaxation but, with modest blood pressure elevation, developed abdominal aortic aneurysms with spontaneous rupture. These findings implicate mitochondrial calcium homeostasis as a critical pathway involved in protecting cardiovascular tissues from oxidative stress. Comparative analyses of transcriptional profiles from humans and mice with cardiovascular pathologies revealed consistently elevated expression of MICU2, a regulatory subunit of the mitochondrial calcium uniporter complex. To determine if MICU2 expression was cardioprotective, we produced and characterized Micu2−/− mice. Mutant mice had left atrial enlargement and Micu2−/− cardiomyocytes had delayed sarcomere relaxation and cytosolic calcium reuptake kinetics, indicating diastolic dysfunction. RNA sequencing (RNA-seq) of Micu2−/− ventricular tissues revealed markedly reduced transcripts encoding the apelin receptor (Micu2−/− vs. wild type, P = 7.8 × 10−40), which suppresses angiotensin II receptor signaling via allosteric transinhibition. We found that Micu2−/− and wild-type mice had comparable basal blood pressures and elevated responses to angiotensin II infusion, but that Micu2−/− mice exhibited systolic dysfunction and 30% lethality from abdominal aortic rupture. Aneurysms and rupture did not occur with norepinephrine-induced hypertension. Aortic tissue from Micu2−/− mice had increased expression of extracellular matrix remodeling genes, while single-cell RNA-seq analyses showed increased expression of genes related to reactive oxygen species, inflammation, and proliferation in fibroblast and smooth muscle cells. We concluded that Micu2−/− mice recapitulate features of diastolic heart disease and define previously unappreciated roles for Micu2 in regulating angiotensin II-mediated hypertensive responses that are critical in protecting the abdominal aorta from injury.


PLOS ONE | 2016

Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 In Vitro

Daniel M. DeLaughter; Cynthia R. Clark; Danos C. Christodoulou; Christine E. Seidman; H. Scott Baldwin; J. G. Seidman; Joey V. Barnett

The epicardium plays an important role in coronary vessel formation and Tgfbr3-/- mice exhibit failed coronary vessel development associated with decreased epicardial cell invasion. Immortalized Tgfbr3-/- epicardial cells display the same defects. Tgfbr3+/+ and Tgfbr3-/- cells incubated for 72 hours with VEH or ligands known to promote invasion via TGFβR3 (TGFβ1, TGFβ2, BMP2), for 72 hours were harvested for RNA-seq analysis. We selected for genes >2-fold differentially expressed between Tgfbr3+/+ and Tgfbr3-/- cells when incubated with VEH (604), TGFβ1 (515), TGFβ2 (553), or BMP2 (632). Gene Ontology (GO) analysis of these genes identified dysregulated biological processes consistent with the defects observed in Tgfbr3-/- cells, including those associated with extracellular matrix interaction. GO and Gene Regulatory Network (GRN) analysis identified distinct expression profiles between TGFβ1-TGFβ2 and VEH-BMP2 incubated cells, consistent with the differential response of epicardial cells to these ligands in vitro. Despite the differences observed between Tgfbr3+/+ and Tgfbr3-/- cells after TGFβ and BMP ligand addition, GRNs constructed from these gene lists identified NF-ĸB as a key nodal point for all ligands examined. Tgfbr3-/- cells exhibited decreased expression of genes known to be activated by NF-ĸB signaling. NF-ĸB activity was stimulated in Tgfbr3+/+ epicardial cells after TGFβ2 or BMP2 incubation, while Tgfbr3-/- cells failed to activate NF-ĸB in response to these ligands. Tgfbr3+/+ epicardial cells incubated with an inhibitor of NF-ĸB signaling no longer invaded into a collagen gel in response to TGFβ2 or BMP2. These data suggest that NF-ĸB signaling is dysregulated in Tgfbr3-/- epicardial cells and that NF-ĸB signaling is required for epicardial cell invasion in vitro. Our approach successfully identified a signaling pathway important in epicardial cell behavior downstream of TGFβR3. Overall, the genes and signaling pathways identified through our analysis yield the first comprehensive list of candidate genes whose expression is dependent on TGFβR3 signaling.


Circulation | 2018

Spatiotemporal Multi-omics Mapping Generates a Molecular Atlas of the Aortic Valve and Reveals Networks Driving Disease

Florian Schlotter; Arda Halu; Shinji Goto; Mark C. Blaser; Simon C. Body; Lang H. Lee; Hideyuki Higashi; Daniel M. DeLaughter; Joshua D. Hutcheson; Payal Vyas; Tan Pham; Maximillian A. Rogers; Amitabh Sharma; Christine E. Seidman; Joseph Loscalzo; Jonathan G. Seidman; Masanori Aikawa; Sasha Singh; Elena Aikawa

Background: No pharmacological therapy exists for calcific aortic valve disease (CAVD), which confers a dismal prognosis without invasive valve replacement. The search for therapeutics and early diagnostics is challenging because CAVD presents in multiple pathological stages. Moreover, it occurs in the context of a complex, multi-layered tissue architecture; a rich and abundant extracellular matrix phenotype; and a unique, highly plastic, and multipotent resident cell population. Methods: A total of 25 human stenotic aortic valves obtained from valve replacement surgeries were analyzed by multiple modalities, including transcriptomics and global unlabeled and label-based tandem-mass-tagged proteomics. Segmentation of valves into disease stage–specific samples was guided by near-infrared molecular imaging, and anatomic layer-specificity was facilitated by laser capture microdissection. Side-specific cell cultures were subjected to multiple calcifying stimuli, and their calcification potential and basal/stimulated proteomes were evaluated. Molecular (protein–protein) interaction networks were built, and their central proteins and disease associations were identified. Results: Global transcriptional and protein expression signatures differed between the nondiseased, fibrotic, and calcific stages of CAVD. Anatomic aortic valve microlayers exhibited unique proteome profiles that were maintained throughout disease progression and identified glial fibrillary acidic protein as a specific marker of valvular interstitial cells from the spongiosa layer. CAVD disease progression was marked by an emergence of smooth muscle cell activation, inflammation, and calcification-related pathways. Proteins overrepresented in the disease-prone fibrosa are functionally annotated to fibrosis and calcification pathways, and we found that in vitro, fibrosa-derived valvular interstitial cells demonstrated greater calcification potential than those from the ventricularis. These studies confirmed that the microlayer-specific proteome was preserved in cultured valvular interstitial cells, and that valvular interstitial cells exposed to alkaline phosphatase–dependent and alkaline phosphatase–independent calcifying stimuli had distinct proteome profiles, both of which overlapped with that of the whole tissue. Analysis of protein–protein interaction networks found a significant closeness to multiple inflammatory and fibrotic diseases. Conclusions: A spatially and temporally resolved multi-omics, and network and systems biology strategy identifies the first molecular regulatory networks in CAVD, a cardiac condition without a pharmacological cure, and describes a novel means of systematic disease ontology that is broadly applicable to comprehensive omics studies of cardiovascular diseases.

Collaboration


Dive into the Daniel M. DeLaughter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine E. Seidman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Aikawa

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jamille Y. Robinson

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge