Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Mendes Pereira Ardisson-Araújo is active.

Publication


Featured researches published by Daniel Mendes Pereira Ardisson-Araújo.


Journal of General Virology | 2014

Proteomic analyses of baculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus budded and occluded virus.

Carla Torres Braconi; Daniel Mendes Pereira Ardisson-Araújo; Adriana Franco Paes Leme; Juliana Velasco de Castro Oliveira; Bianca Alves Pauletti; Alejandra Garcia-Maruniak; Bergmann Morais Ribeiro; James E. Maruniak; Paolo Marinho de Andrade Zanotto

Baculoviruses infect insects, producing two distinct phenotypes during the viral life cycle: the budded virus (BV) and the occlusion-derived virus (ODV) for intra- and inter-host spread, respectively. Since the 1980s, several countries have been using Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) as a biological control agent against the velvet bean caterpillar, A. gemmatalis. The genome of AgMNPV isolate 2D (AgMNPV-2D) carries at least 152 potential genes, with 24 that possibly code for structural proteins. Proteomic studies have been carried out on a few baculoviruses, with six ODV and two BV proteomes completed so far. Moreover, there are limited data on virion proteins carried by AgMNPV-2D. Therefore, structural proteins of AgMNPV-2D were analysed by MALDI- quadrupole-TOF and liquid chromatography MS/MS. A total of 44 proteins were associated with the ODV and 33 with the BV of AgMNPV-2D. Although 38 structural proteins were already known, we found six new proteins in the ODV and seven new proteins carried by the AgMNPV-2D BV. Eleven cellular proteins that were found on several other enveloped viruses were also identified, which are possibly carried with the virion. These findings may provide novel insights into baculovirus biology and their host interaction. Moreover, our data may be helpful in subsequent applied studies aiming to improve AgMNPV use as a biopesticide and a biotechnology tool for gene expression or delivery.


PLOS ONE | 2012

Cytotoxicity Analysis of Three Bacillus thuringiensis Subsp. israelensis δ-Endotoxins towards Insect and Mammalian Cells

Roberto Franco Teixeira Corrêa; Daniel Mendes Pereira Ardisson-Araújo; Rose Gomes Monnerat; Bergmann Morais Ribeiro

Three members of the δ-endotoxin group of toxins expressed by Bacillus thuringiensis subsp. israelensis, Cyt2Ba, Cry4Aa and Cry11A, were individually expressed in recombinant acrystalliferous B. thuringiensis strains for in vitro evaluation of their toxic activities against insect and mammalian cell lines. Both Cry4Aa and Cry11A toxins, activated with either trypsin or Spodoptera frugiperda gastric juice (GJ), resulted in different cleavage patterns for the activated toxins as seen by SDS-PAGE. The GJ-processed proteins were not cytotoxic to insect cell cultures. On the other hand, the combination of the trypsin-activated Cry4Aa and Cry11A toxins yielded the highest levels of cytotoxicity to all insect cells tested. The combination of activated Cyt2Ba and Cry11A also showed higher toxic activity than that of toxins activated individually. When activated Cry4Aa, Cry11A and Cyt2Ba were used simultaneously in the same assay a decrease in toxic activity was observed in all insect cells tested. No toxic effect was observed for the trypsin-activated Cry toxins in mammalian cells, but activated Cyt2Ba was toxic to human breast cancer cells (MCF-7) when tested at 20 µg/mL.


PLOS ONE | 2013

A new theraphosid spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection.

Daniel Mendes Pereira Ardisson-Araújo; Fabricio da Silva Morgado; Elisabeth F. Schwartz; Gerardo Corzo; Bergmann Morais Ribeiro

Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3) has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV) expression. Five different forms of Ba3 were assessed; (1) the full-length sequence, (2) the pro-peptide and mature region, (3) only the mature region, and the mature region fused to an (4) insect or a (5) virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect cells.


Virology Journal | 2013

A baculovirus-mediated strategy for full-length plant virus coat protein expression and purification

Daniel Mendes Pereira Ardisson-Araújo; Juliana Ribeiro Rocha; Márcio Hedil Oliveira da Costa; Anamélia Lorenzetti Bocca; André Nepomuceno Dusi; Renato O. Resende; Bergmann Morais Ribeiro

BackgroundGarlic production is severely affected by virus infection, causing a decrease in productivity and quality. There are no virus-free cultivars and garlic-infecting viruses are difficult to purify, which make specific antibody production very laborious. Since high quality antisera against plant viruses are important tools for serological detection, we have developed a method to express and purify full-length plant virus coat proteins using baculovirus expression system and insects as bioreactors.ResultsIn this work, we have fused the full-length coat protein (cp) gene from the Garlic Mite-borne Filamentous Virus (GarMbFV) to the 3′-end of the Polyhedrin (polh) gene of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The recombinant baculovirus was amplified in insect cell culture and the virus was used to infect Spodoptera frugiperda larvae. Thus, the recombinant fused protein was easily purified from insect cadavers using sucrose gradient centrifugation and analyzed by Western Blotting. Interestingly, amorphous crystals were produced in the cytoplasm of cells infected with the recombinant virus containing the chimeric-protein gene but not in cells infected with the wild type and recombinant virus containing the hexa histidine tagged Polh. Moreover, the chimeric protein was used to immunize rats and generate antibodies against the target protein. The antiserum produced was able to detect plants infected with GarMbFV, which had been initially confirmed by RT-PCR.ConclusionsThe expression of a plant virus full-length coat protein fused to the baculovirus Polyhedrin in recombinant baculovirus-infected insects was shown to produce high amounts of the recombinant protein which was easily purified and efficiently used to generate specific antibodies. Therefore, this strategy can potentially be used for the development of plant virus diagnostic kits for those viruses that are difficult to purify, are present in low titers or are present in mix infection in their plant hosts.


Journal of Invertebrate Pathology | 2015

Complete genome sequence and structural characterization of a novel iflavirus isolated from Opsiphanes invirae (Lepidoptera: Nymphalidae)

Leonardo Assis da Silva; Daniel Mendes Pereira Ardisson-Araújo; Ricardo S. Tinoco; Odair Aparecido Fernandes; Fernando L. Melo; Bergmann Morais Ribeiro

Opsiphanes invirae (Lepidopera: Nymphalidae) is a common pest of the African oil palm tree (Elaeis guineensis) in Brazil. Dead larvae were collected in canopy of oil palm trees cultivated in the amazon region (Para State) and analyzed for viral infection. Electron microscopy of caterpillar extracts showed an icosahedral picorna-like virus particle with 30nm in diameter. Total RNA extracted from partially purified virus particles was sequenced. A contig of 10,083 nucleotides (nt) was identified and showed to encode one single predicted polyprotein with 3185 amino acid residues. Phylogenetic analysis showed that the new virus was closely related to another lepidopteran infective virus Spodoptera exigua iflavirus 1(SeIV-1), with 35% amino acid pairwise identity. The novel virus fulfils all ICTV requirements for a new iflavirus species and was named Opsiphanes invirae Iflavirus 1 (OilV-1).


Scientific Reports | 2016

Genome sequence of Perigonia lusca single nucleopolyhedrovirus: insights into the evolution of a nucleotide metabolism enzyme in the family Baculoviridae

Daniel Mendes Pereira Ardisson-Araújo; Rayane Nunes Lima; Fernando L. Melo; Rollie J. Clem; Ning Huang; Sônia Nair Báo; Daniel Ricardo Sosa-Gómez; Bergmann Morais Ribeiro

The genome of a novel group II alphabaculovirus, Perigonia lusca single nucleopolyhedrovirus (PeluSNPV), was sequenced and shown to contain 132,831 bp with 145 putative ORFs (open reading frames) of at least 50 amino acids. An interesting feature of this novel genome was the presence of a putative nucleotide metabolism enzyme-encoding gene (pelu112). The pelu112 gene was predicted to encode a fusion of thymidylate kinase (tmk) and dUTP diphosphatase (dut). Phylogenetic analysis indicated that baculoviruses have independently acquired tmk and dut several times during their evolution. Two homologs of the tmk-dut fusion gene were separately introduced into the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, which lacks tmk and dut. The recombinant baculoviruses produced viral DNA, virus progeny, and some viral proteins earlier during in vitro infection and the yields of viral occlusion bodies were increased 2.5-fold when compared to the parental virus. Interestingly, both enzymes appear to retain their active sites, based on separate modeling using previously solved crystal structures. We suggest that the retention of these tmk-dut fusion genes by certain baculoviruses could be related to accelerating virus replication and to protecting the virus genome from deleterious mutation.


Scientific Reports | 2016

The complete genome of a baculovirus isolated from an insect of medical interest: Lonomia obliqua (Lepidoptera: Saturniidae).

C. W. Aragão-Silva; M. S. Andrade; Daniel Mendes Pereira Ardisson-Araújo; J. E. A. Fernandes; F. S. Morgado; S. N. Báo; R. H. P. Moraes; J. L. C. Wolff; Fernando L. Melo; Bergmann Morais Ribeiro

Lonomia obliqua (Lepidoptera: Saturniidae) is a species of medical importance due to the severity of reactions caused by accidental contact with the caterpillar bristles. Several natural pathogens have been identified in L. obliqua, and among them the baculovirus Lonomia obliqua multiple nucleopolyhedrovirus (LoobMNPV). The complete genome of LoobMNPV was sequenced and shown to have 120,022 bp long with 134 putative open reading frames (ORFs). Phylogenetic analysis of the LoobMNPV genome showed that it belongs to Alphabaculovirus group I (lepidopteran-infective NPV). A total of 12 unique ORFs were identified with no homologs in other sequenced baculovirus genomes. One of these, the predicted protein encoded by loob035, showed significant identity to an eukaryotic transcription terminator factor (TTF2) from the Lepidoptera Danaus plexippus, suggesting an independent acquisition through horizontal gene transfer. Homologs of cathepsin and chitinase genes, which are involved in host integument liquefaction and viral spread, were not found in this genome. As L. obliqua presents a gregarious behavior during the larvae stage the impact of this deletion might be neglectable.


Archives of Virology | 2015

The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects

Virgínia Carla de Oliveira; Fabricio da Silva Morgado; Daniel Mendes Pereira Ardisson-Araújo; Renato O. Resende; Bergmann Morais Ribeiro

In this work, we showed that cell death induced by a recombinant (vAcNSs) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing the silencing suppressor (NSs) protein of Tomato spotted wilt virus (TSWV) was enhanced on permissive and semipermissive cell lines. The expression of a heterologous gene (firefly luciferase) during co-infection of insect cells with vAcNSs and a second recombinant baculovirus (vAgppolhfluc) was shown to increase when compared to single vAgppolhfluc infections. Furthermore, the vAcNSs mean time-to-death values were significantly lower than those for wild-type AcMNPV on larvae of Spodoptera frugiperda and Anticarsia gemmatalis. These results showed that the TSWV-NSs protein could efficiently increase heterologous protein expression in insect cells as well as baculovirus pathogenicity and virulence, probably by suppressing the gene-silencing machinery in insects.


Viruses | 2018

A Novel Betabaculovirus Isolated from the Monocot Pest Mocis latipes (Lepidoptera: Noctuidae) and the Evolution of Multiple-Copy Genes

Daniel Mendes Pereira Ardisson-Araújo; Ana da Silva; Fernando Lucas de Melo; Ethiane dos Santos; Daniel Ricardo Sosa-Gómez; Bergmann Morais Ribeiro

In this report, we described the genome of a novel baculovirus isolated from the monocot insect pest Mocis latipes, the striped grass looper. The genome has 134,272 bp in length with a G + C content of 38.3%. Based on the concatenated sequence of the 38 baculovirus core genes, we found that the virus is a betabaculovirus closely related to the noctuid-infecting betabaculoviruses including Pseudaletia unipuncta granulovirus (PsunGV), Trichoplusia ni granulovirus (TnGV), Helicoverpa armigera granulovirus (HearGV), and Xestia c-nigrum granulovirus (XecnGV). The virus may constitute a new Betabaculovirus species tentatively named Mocis latipes granulovirus (MolaGV). After gene content analysis, five open reading frames (ORFs) were found to be unique to MolaGV and several auxiliary genes were found including iap-3, iap-5, bro-a, bro-b, and three enhancins. The virus genome lacked both chitinase and cathepsin. We then looked at the evolutionary history of the enhancin gene and found that betabaculovirus acquired this gene from an alphabaculovirus followed by several duplication events. Gene duplication also happened to an endonuclease-like gene. Genomic and gene content analyses revealed both a strict collinearity and gene expansion into the genome of the MolaGV-related species. We also characterized the granulin gene using a recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and found that occlusion bodies were produced into the nucleus of infected cells and presented a polyhedral shape and no occluded virions within. Overall, betabaculovirus genome sequencing is of importance to the field as few genomes are publicly accessible. Mocis latipes is a secondary pest of maize, rice, and wheat crops in Brazil. Certainly, both the discovery and description of novel baculoviruses may lead to development of greener and safer pesticides in order to counteract and effectively control crop damage-causing insect populations


Virus Research | 2018

The complete genome sequence of the first hesperiid-infecting alphabaculovirus isolated from the leguminous pest Urbanus proteus (Lepidoptera: Hesperiidae)

Ethiane R. Santos; Lucas B. de Oliveira; Lenen Peterson; Daniel Ricardo Sosa-Gómez; Bergmann Morais Ribeiro; Daniel Mendes Pereira Ardisson-Araújo

Baculoviruses are insect viruses largely used as expression vectors and biopesticides. These viruses can efficiently infect the larval stage of several agricultural pests worldwide causing a lethal disease. In this work, we found a novel baculovirus isolated from the larval stage of Urbanus proteus (L.), the bean leafroller and characterized its complete genome. This is an important pest of several leguminous plants in Brazil and belongs to the butterfly family Hesperiidae, from where no baculovirus genome sequence has been described. This new virus was shown to have the smallest genome among all alphabaculoviruses sequenced to date, with 105,555 bp and 119 putative ORFs. We found ten unique genes, seven bro, and the 38 baculovirus core genes. UrprNPV was found to be related to the Adoxophyes-infecting baculoviruses AdorNPV and AdhoNPV with high genetic distance and a long branch length. Interestingly, few individual core gene-based phylogenies were found to support the relationship of UrprNPV to both AdorNPV and AdhoNPV. Importantly, the increase in number of completely sequenced baculovirus points to a very exciting way to understand baculovirus and its evolution and could potentially help the use of baculovirus as both biopesticides and expression vectors.

Collaboration


Dive into the Daniel Mendes Pereira Ardisson-Araújo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Ricardo Sosa-Gómez

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerardo Corzo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge