Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sônia Nair Báo is active.

Publication


Featured researches published by Sônia Nair Báo.


International Journal of Nanomedicine | 2011

Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system

Luciana Landim Carneiro Estevanato; Débora De Oliveira Silva E Cintra; Nayara Baldini; Flávia Arruda Portilho; L.S. Barbosa; Olímpia Paschoal Martins; Bruno Marques Lacava; Ana Luisa Miranda-Vilela; Antonio C. Tedesco; Sônia Nair Báo; P.C. Morais; Zulmira Guerrero Marques Lacava

Background: The magnetic albumin nanosphere (MAN), encapsulating maghemite nanoparticles, was designed as a magnetic drug delivery system (MDDS) able to perform a variety of biomedical applications. It is noteworthy that MAN was efficient in treating Ehrlich’s tumors by the magnetohyperthermia procedure. Methods and materials: In this study, several nanotoxicity tests were systematically carried out in mice from 30 minutes until 30 days after MAN injection to investigate their biocompatibility status. Cytometry analysis, viability tests, micronucleus assay, and histological analysis were performed. Results: Cytometry analysis and viability tests revealed MAN promotes only slight and temporary alterations in the frequency of both leukocyte populations and viable peritoneal cells, respectively. Micronucleus assay showed absolutely no genotoxicity or cytotoxicity effects and histological analysis showed no alterations or even nanoparticle clusters in several investigated organs but, interestingly, revealed the presence of MAN clusters in the central nervous system (CNS). Conclusion: The results showed that MAN has desirable in vivo biocompatibility, presenting potential for use as a MDDS, especially in CNS disease therapy.


Experimental Parasitology | 2013

Leishmanicidal activity of amphotericin B encapsulated in PLGA–DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice

Ricardo Fontoura de Carvalho; Ieler Ferreira Ribeiro; Ana Luisa Miranda-Vilela; José de Souza Filho; Olímpia Paschoal Martins; Débora de Oliveira Cintra e Silva; Antonio C. Tedesco; Zulmira Guerrero Marques Lacava; Sônia Nair Báo; Raimunda Nonata Ribeiro Sampaio

The major goal of this work was to design a new nanoparticle drug delivery system for desoxycholate amphotericin B (D-AMB), based on controlled particle size, looking for the most successful release of the active agents in order to achieve the best site-specific action of the drug at the therapeutically optimal rate and dose regimen. For this, AMB nanoencapsulated in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles (Nano-D-AMB) has been developed, and its efficacy was evaluated in the treatment of experimental cutaneous leishmaniasis in C57BL/6 mice, to test if our nano-drug delivery system could favor the reduction of the dose frequency required to achieve the same therapeutic level of free D-AMB, and so, an extended dosing interval. Magnetic citrate-coated maghemite nanoparticles were added to this nanosystem (Nano-D-AMB-MG) aiming to increase controlled release of AMB by magnetohyperthermia. Female mice (N=6/group) were infected intradermally in the right footpad with promastigotes of Leishmania amazonensis in the metacyclic phase, receiving the following intraperitoneal treatments: 1% PBS for 10 consecutive days; D-AMB at 2 mg/kg/day for 10 days (totalizing 20 mg/kg/animal); Nano-D-AMB and Nano-D-AMB-MG at 6 mg/kg on the 1st, 4th and 7th days and at 2 mg/kg on the 10th day, also totalizing 20 mg/kg/animal by treatment end. The Nano-D-AMB-MG group was submitted to an AC magnetic field, allowing the induction of magnetohyperthermia. The evaluations were through paw diameter measurements; parasite number and cell viability were investigated by limiting dilution assay. D-AMB-coated PLGA-DMSA nanoparticles showed the same efficacy as free D-AMB to reduce paw diameter; however, the Nano-D-AMB treatment also promoted a significantly greater reduction in parasite number and cell viability compared with free D-AMB. The nano-drug AMB delivery system appeared more effective than free D-AMB therapy to reduce the dose frequency required to achieve the same therapeutic level. It thus favors a longer interval between doses, as expected with development of a new nano drug delivery system, and may be useful in the treatment of many different pathologies, from cancer to neurodegenerative diseases.


Journal of Nanobiotechnology | 2013

Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer

Marcella Lemos Brettas Carneiro; Raphael Cândido Apolinário Peixoto; Graziella Anselmo Joanitti; Ricardo G. Oliveira; Luís Augusto Muniz Telles; Ana Luisa Miranda-Vilela; Anamélia Lorenzetti Bocca; Leonora Maciel de Souza Vianna; Izabel Cristina Rodrigues da Silva; Aparecido Ribeiro de Souza; Zulmira Guerrero Marques Lacava; Sônia Nair Báo

BackgroundMagnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma.MethodsMice were evaluated with regard to the treatments’ toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry.ResultsRegarding the treatments’ toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining.ConclusionsIn summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report demonstrating the therapeutic efficacy of maghemite nanoparticles coated with rhodium (II) citrate. This treatment prolonged the survival period of treated mice without inducing apparent systemic toxicity, which strengthens its use for future breast cancer therapeutic applications.


Journal of Nanobiotechnology | 2011

Free Rhodium (II) citrate and rhodium (II) citrate magnetic carriers as potential strategies for breast cancer therapy

Marcella Lemos Brettas Carneiro; Eloiza da Silva Nunes; Raphael Cândido Apolinário Peixoto; Ricardo G. Oliveira; Luiza Helena Madia Lourenço; Izabel Cristina Rodrigues da Silva; Andreza R. Simioni; Antonio C. Tedesco; Aparecido Ribeiro de Souza; Zulmira Guerrero Marques Lacava; Sônia Nair Báo

BackgroundRhodium (II) citrate (Rh2(H2cit)4) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates Rh2(H2cit)4 as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh2(H2cit)4 and SPIOs can represent a strategy to enhance the formers therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh2(H2cit)4) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures.ResultsTreatment with free Rh2(H2cit)4 induced cytotoxicity that was dependent on dose, time, and cell line. The IC50 values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 μM Rh2(H2cit)4-loaded maghemite nanoparticles (Magh-Rh2(H2cit)4) and Rh2(H2cit)4-loaded magnetoliposomes (Lip-Magh-Rh2(H2cit)4) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh2(H2cit)4, were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh2(H2cit)4 induces cell death by apoptosis.ConclusionsThe treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast normal cells, which is the opposite of the results observed with free Rh2(H2cit)4 treatment. Thus, magnetic nanoparticles represent an attractive platform as carriers in Rh2(H2cit)4 delivery systems, since they can act preferentially in tumor cells. Therefore, these nanopaticulate systems may be explored as a potential tool for chemotherapy drug development.


Journal of Nanobiotechnology | 2014

PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

Ludmilla Regina de Souza; Luis Alexandre Muehlmann; Mayara Simonelly Costa dos Santos; Rayane Ganassin; Rosana Simón-Vázquez; Graziella Anselmo Joanitti; Ewa Mosiniewicz-Szablewska; Piotr Suchocki; P.C. Morais; África González-Fernández; Ricardo Bentes Azevedo; Sônia Nair Báo

BackgroundSelol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549).ResultsNanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes.ConclusionsThis study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells.


Anatomia Histologia Embryologia | 2006

Light Microscopical and Ultrastructural Characterization of Black Howler Monkey (Alouatta caraya) Ovarian Follicles

L. H. R. Lopes; Carolina Madeira Lucci; Mônica Pereira Garcia; R. B. de Azevedo; Sônia Nair Báo

The present study describes the morphological characteristics of black howler monkey (Alouatta caraya) ovarian follicles. One ovary of an adult healthy black howler monkey was collected and processed for light and electron microscopy. Primordial, primary, secondary, tertiary and pre‐ovulatory follicles were evaluated for their morphometrical aspects. The ovary of black howler monkey presented a distinct conformation with a uniform distribution of the follicles mostly in the peripheric cortex. This black howler monkey ovary presented a total of 59 921 ovarian follicles. From this amount, 71.1% were classified as primordial, 18.9% as primary, 8.1% as secondary, 1.4% as tertiary and 0.5% as pre‐ovulatory follicles. From all these developmental stages, the mean diameters of follicles, oocytes, oocytes nuclei and the mean number of granulosa cells are described. Moreover, primordial, primary and secondary follicles have been observed by electron microscopy.


Tumor Biology | 2015

Antitumor effect of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles on mice bearing breast cancer: a systemic toxicity assay

Raphael Cândido Apolinário Peixoto; Ana Luisa Miranda-Vilela; José de Souza Filho; Marcella Lemos Brettas Carneiro; Ricardo G. Oliveira; Matheus Oliveira da Silva; Aparecido Ribeiro de Souza; Sônia Nair Báo

Breast cancer is one of the most prevalent cancer types among women. The use of magnetic fluids for specific delivery of drugs represents an attractive platform for chemotherapy. In our previous studies, it was demonstrated that maghemite nanoparticles coated with rhodium (II) citrate (Magh-Rh2Cit) induced in vitro cytotoxicity and in vivo antitumor activity, followed by intratumoral administration in breast carcinoma cells. In this study, our aim was to follow intravenous treatment to evaluate the systemic antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Female Balb/c mice were evaluated with regard to toxicity of intravenous treatments through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine and liver, kidney, and lung histology. The antitumor activity of rhodium (II) citrate (Rh2Cit), Magh-Rh2Cit, and maghemite nanoparticles coated with citrate (Magh-Cit), used as control, was evaluated by tumor volume reduction, histology, and morphometric analysis. Magh-Rh2Cit and Magh-Cit promoted a significant decrease in tumor area, and no experimental groups presented hematotoxic effects or increased levels of serum ALT and creatinine. This observation was corroborated by the histopathological examination of the liver and kidney of mice. Furthermore, the presence of nanoparticles was verified in lung tissue with no morphological changes, supporting the idea that our nanoformulations did not induce toxicity effects. No studies about the systemic action of rhodium (II) citrate-loaded maghemite nanoparticles have been carried out, making this report a suitable starting point for exploring the therapeutic potential of these compounds in treating breast cancer.


PLOS ONE | 2015

Morphological Analysis of Reticuloendothelial System in Capuchin Monkeys (Sapajus spp.) after Meso-2,3-Dimercaptosuccinic Acid (DMSA) Coated Magnetic Nanoparticles Administration.

Shélida Vasconcelos Braz; Victoria Monge-Fuentes; Jaqueline Rodrigues da Silva; Carlos Tomaz; Maria Clotilde Tavares; Mônica Pereira Garcia; Sônia Nair Báo; Silene P. Lozzi; Ricardo Bentes Azevedo

Magnetic nanoparticles can be used for numerous in vitro and in vivo applications. However, since uptake by the reticuloendothelial system represents an obstacle for the achievement of nanoparticle diagnostic and therapeutic goals, the aim of the present study was to evaluate the uptake of dimercaptosuccinic acid coated magnetic nanoparticles by reticuloendothelial system phagocytic cells present in lymph nodes, spleen, and liver tissue and how the presence of these particles could have an impact on the morphology of these organs in capuchin monkeys (Sapajus spp.). Animals were intravenously injected with dimercaptosuccinic acid coated magnetic nanoparticles and euthanized 12 hours and 90 days post-injection. Organs were processed by transmission electron microscopy and histological techniques. Samples of spleen and lymph nodes showed no morphological changes. Nevertheless, liver samples collected 90 days post-administration showed slight morphological alteration in space of Disse. Moreover, morphometrical analysis of hepatic mitochondria was performed, suggesting a clear positive correlation between mitochondrial area and dimercaptosuccinic acid coated magnetic nanoparticles administration time. The present results are directly relevant to current safety considerations in clinical diagnostic and therapeutic uses of magnetic nanoparticles.


Nanotechnology | 2015

Antitumor activity and systemic effects of PVM/MA-shelled selol nanocapsules in lung adenocarcinoma-bearing mice.

Ludmilla Regina de Souza; Luis Alexandre Muehlmann; Lívia Carneiro Matos; Rosana Simón-Vázquez; Zulmira Guerreiro Marques Lacava; Alfredo Maurício Batista De-Paula; Ewa Mosiniewicz-Szablewska; Piotr Suchocki; P.C. Morais; África González-Fernández; Sônia Nair Báo; Ricardo Bentes Azevedo

Selol is a semi-synthetic compound containing selenite that is effective against cancerous cells and safer for clinical applications in comparison with other inorganic forms of selenite. Recently, we have developed a formulation of poly(methyl vinyl ether-co-maleic anhydride)-shelled selol nanocapsules (SPN), which reduced the proliferative activity of lung adenocarcinoma cells and presented little deleterious effects on normal cells in in vitro studies. In this study, we report on the antitumor activity and systemic effects induced by this formulation in chemically induced lung adenocarcinoma-bearing mice. The in vivo antitumor activity of the SPN was verified by macroscopic quantification, immunohistochemistry and morphological analyses. Toxicity analyses were performed by evaluations of the kidney, liver, and spleen; analyses of hemogram and plasma levels of alanine aminotransferase, aspartate transaminase, urea, and creatinine; and DNA fragmentation and cell cycle activity of the bone marrow cells. Furthermore, we investigated the potential of the SPN formulation to cause hemolysis, activate the complement system, provoke an inflammatory response and change the conformation of the plasma proteins. Our results showed that the SPN reduced the area of the surface tumor nodules but not the total number of tumor nodules. The biochemical and hematological findings were suggestive of the low systemic toxicity of the SPN formulation. The surface properties of the selol nanocapsules point to characteristics that are consistent with the treatment of the tumors in vivo: low hemolytic activity, weak inflammatory reaction with no activation of the complement system, and mild or absent conformational changes of the plasma proteins. In conclusion, this report suggests that the SPN formulation investigated herein exhibits anti-tumoral effects against lung adenocarcinoma in vivo and is associated with low systemic toxicity and high biocompatibility.


Journal of Nanoscience and Nanotechnology | 2018

Decoration of a Poly(methyl vinyl ether-co-maleic anhydride)-Shelled Selol Nanocapsule with Folic Acid Increases Its Activity Against Different Cancer Cell Lines In Vitro

Rayane Ganassin; Ludmilla Regina de Souza; Karen Rapp Py-Daniel; João Paulo Figueiró Longo; Janaína Moreira Coelho; Mosar Corrêa Rodrigues; Cheng-Shi Jiang; Jinsong Gu; P.C. Morais; Ewa Mosiniewicz-Szablewska; Piotr Suchocki; Sônia Nair Báo; Ricardo Bentes Azevedo; Luis Alexandre Muehlmann

Due to the low therapeutic index of different chemotherapeutic drugs used for cancer treatment, the development of new anticancer drugs remains an intense field of research. A recently developed mixture of selenitetriacylglycerides, selol, was shown to be active against different cancer cells in vitro. As this compound is highly hydrophobic, it was encapsulated, in a previous study, into poly(methyl vinyl ether-co-maleic anhydride)-shelled nanocapsules in order to improve its dispersibility in aqueous media. Following this line of research, the present report aimed at enhancing the In Vitro activity of the selol nanocapsules against cancerous cells by decorating their surface with folic acid. It is known that several cancer cells overexpress folate receptors. Stable folic acid-decorated selol nanocapsules (SNP-FA) were obtained, which showed to be spherical, with a hydro-dynamic diameter of 364 nm, and zeta potential of -24 mV. In comparison to non-decorated selol nanocapsules, SNP-FA presented higher activity against 4T1, MCF-7 and HeLa cells. Moreover, the decoration of the nanocapsules did not alter their toxicity towards fibroblasts, NIH-3T3 cells. These results show that the decoration with folic acid increased the toxicity of selol nanocapsules to cancer cells. These nanocapsules, besides enabling to disperse selol in an aqueous medium, increased the toxicity of this drug In Vitro, and may be useful to treat cancer in vivo, potentially increasing the specificity of selol towards cancer cells.

Collaboration


Dive into the Sônia Nair Báo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.C. Morais

University of Brasília

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge