Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel O. Sigle is active.

Publication


Featured researches published by Daniel O. Sigle.


Nature Communications | 2014

DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering

Vivek V. Thacker; Lars O. Herrmann; Daniel O. Sigle; Tao Zhang; Tim Liedl; Jeremy J. Baumberg; Ulrich F. Keyser

Plasmonic sensors are extremely promising candidates for label-free single-molecule analysis but require exquisite control over the physical arrangement of metallic nanostructures. Here we employ self-assembly based on the DNA origami technique for accurate positioning of individual gold nanoparticles. Our innovative design leads to strong plasmonic coupling between two 40 nm gold nanoparticles reproducibly held with gaps of 3.3 ± 1 nm. This is confirmed through far field scattering measurements on individual dimers which reveal a significant red shift in the plasmonic resonance peaks, consistent with the high dielectric environment due to the surrounding DNA. We use surface-enhanced Raman scattering (SERS) to demonstrate local field enhancements of several orders of magnitude through detection of a small number of dye molecules as well as short single-stranded DNA oligonucleotides. This demonstrates that DNA origami is a powerful tool for the high-yield creation of SERS-active nanoparticle assemblies with reliable sub-5 nm gap sizes.


Nano Letters | 2013

Controlling subnanometer gaps in plasmonic dimers using graphene

Jan Mertens; Anna Eiden; Daniel O. Sigle; Fumin Huang; A. Lombardo; Zhipei Sun; R. S. Sundaram; Alan Colli; Christos Tserkezis; Javier Aizpurua; Silvia Milana; A. C. Ferrari; Jeremy J. Baumberg

Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable subnanometer gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near-infrared, these disappear for increasing numbers of layers. These doublets arise from charger-transfer-sensitive gap plasmons, allowing optical measurement to access out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.


Nano Letters | 2015

Nanooptics of molecular-shunted plasmonic nanojunctions

Felix Benz; Christos Tserkezis; Lars O. Herrmann; Bart de Nijs; Alan Sanders; Daniel O. Sigle; Laurynas Pukenas; Stephen D. Evans; Javier Aizpurua; Jeremy J. Baumberg

Gold nanoparticles are separated above a planar gold film by 1.1 nm thick self-assembled molecular monolayers of different conductivities. Incremental replacement of the nonconductive molecules with a chemically equivalent conductive version differing by only one atom produces a strong 50 nm blue-shift of the coupled plasmon. With modeling this gives a conductance of 0.17G0 per biphenyl-4,4′-dithiol molecule and a total conductance across the plasmonic junction of 30G0. Our approach provides a reliable tool quantifying the number of molecules in each plasmonic hotspot, here <200.


Journal of Physical Chemistry Letters | 2013

Reproducible Deep-UV SERRS on Aluminum Nanovoids

Daniel O. Sigle; Elaine A. Perkins; Jeremy J. Baumberg; Sumeet Mahajan

Surface-enhanced Raman scattering (SERS) with deep-UV excitation is of particular interest because a large variety of biomolecules such as amino acids exhibit electronic transitions in the UV spectral range and resonant excitation dramatically increases the cross section of the associated vibrational modes. Despite its potential, UV-SERS is still little-explored. We present a novel straightforward scalable route to fabricate aluminum nanovoids for reproducible SERS in the deep-UV without the need of expensive lithographic techniques. We adopt a modified template stripping method utilizing a soluble template and self-assembled polymer spheres to create nanopatterned aluminum films. We observe high surface enhancement of approximately 6 orders of magnitude, with excitation in the deep-UV (244 nm) on structures optimized for this wavelength. This work thus enables sensitive detection of organics and biomolecules, normally nonresonant at visible wavelengths, with deep-UV surface-enhanced resonant Raman scattering on reproducible and scalable substrates.


ACS Nano | 2015

Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavities

Daniel O. Sigle; Jan Mertens; Lars O. Herrmann; Richard Bowman; Sandrine Ithurria; Benoit Dubertret; Yumeng Shi; Hui Ying Yang; Christos Tserkezis; Javier Aizpurua; Jeremy J. Baumberg

Nanometer-sized gaps between plasmonically coupled adjacent metal nanoparticles enclose extremely localized optical fields, which are strongly enhanced. This enables the dynamic investigation of nanoscopic amounts of material in the gap using optical interrogation. Here we use impinging light to directly tune the optical resonances inside the plasmonic nanocavity formed between single gold nanoparticles and a gold surface, filled with only yoctograms of semiconductor. The gold faces are separated by either monolayers of molybdenum disulfide (MoS2) or two-unit-cell thick cadmium selenide (CdSe) nanoplatelets. This extreme confinement produces modes with 100-fold compressed wavelength, which are exquisitely sensitive to morphology. Infrared scattering spectroscopy reveals how such nanoparticle-on-mirror modes directly trace atomic-scale changes in real time. Instabilities observed in the facets are crucial for applications such as heat-assisted magnetic recording that demand long-lifetime nanoscale plasmonic structures, but the spectral sensitivity also allows directly tracking photochemical reactions in these 2-dimensional solids.


ACS Applied Materials & Interfaces | 2014

Nanoimprint Lithography of Al Nanovoids for Deep-UV SERS

Tao Ding; Daniel O. Sigle; Lars O. Herrmann; Daniel Wolverson; Jeremy J. Baumberg

Deep-ultraviolet surface-enhanced Raman scattering (UV-SERS) is a promising technique for bioimaging and detection because many biological molecules possess UV absorption lines leading to strongly resonant Raman scattering. Here, Al nanovoid substrates are developed by combining nanoimprint lithography of etched polymer/silica opal films with electron beam evaporation, to give a high-performance sensing platform for UV-SERS. Enhancement by more than 3 orders of magnitude in the UV-SERS performance was obtained from the DNA base adenine, matching well the UV plasmonic optical signatures and simulations, demonstrating its suitability for biodetection.


ACS Nano | 2015

Controllable Tuning Plasmonic Coupling with Nanoscale Oxidation

Tao Ding; Daniel O. Sigle; Liwu Zhang; Jan Mertens; Bart de Nijs; Jeremy J. Baumberg

The nanoparticle on mirror (NPoM) construct is ideal for the strong coupling of localized plasmons because of its simple fabrication and the nanometer-scale gaps it offers. Both of these are much harder to control in nanoparticle dimers. Even so, realizing controllable gap sizes in a NPoM remains difficult and continuous tunability is limited. Here, we use reactive metals as the mirror so that the spacing layer of resulting metal oxide can be easily and controllably created with specific thicknesses resulting in continuous tuning of the plasmonic coupling. Using Al as a case study, we contrast different approaches for oxidation including electrochemical oxidation, thermal annealing, oxygen plasma treatments, and photo-oxidation by laser irradiation. The thickness of the oxidation layer is calibrated with depth-mode X-ray photoemission spectroscopy (XPS). These all consistently show that increasing the thickness of the oxidation layer blue-shifts the plasmonic resonance peak while the transverse mode remains constant, which is well matched by simulations. Our approach provides a facile and reproducible method for scalable, local and controllable fabrication of NPoMs with tailored plasmonic coupling, suited for many applications of sensing, photochemistry, photoemission, and photovoltaics.


Journal of Physical Chemistry Letters | 2015

Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting

Daniel O. Sigle; Liwu Zhang; Sandrine Ithurria; Benoit Dubertret; Jeremy J. Baumberg

Enhanced plasmonic fields are a promising way to increase the efficiency of photocatalytic water splitting. The availability of atomically thin materials opens up completely new opportunities. We report photocatalytic water splitting on ultrathin CdSe nanoplatelets placed in plasmonic nanogaps formed by a flat gold surface and a gold nanoparticle. The extreme field intensity created in these gaps increases the electron–hole pair production in the CdSe nanoplatelets and enhances the plasmon-mediated interfacial electron transfer. Compared to individual nanoparticles commonly used to enhance photocatalytic processes, gap-plasmons produce several orders of magnitude higher field enhancement, strongly localized inside the semiconductor sheet thus utilizing the entire photocatalyst efficiently.


Scientific Reports | 2015

Watching individual molecules flex within lipid membranes using SERS

Richard W. Taylor; Felix Benz; Daniel O. Sigle; Richard Bowman; Peng Bao; Johannes S. Roth; George R. Heath; Stephen D. Evans; Jeremy J. Baumberg

Interrogating individual molecules within bio-membranes is key to deepening our understanding of biological processes essential for life. Using Raman spectroscopy to map molecular vibrations is ideal to non-destructively ‘fingerprint’ biomolecules for dynamic information on their molecular structure, composition and conformation. Such tag-free tracking of molecules within lipid bio-membranes can directly connect structure and function. In this paper, stable co-assembly with gold nano-components in a ‘nanoparticle-on-mirror’ geometry strongly enhances the local optical field and reduces the volume probed to a few nm3, enabling repeated measurements for many tens of minutes on the same molecules. The intense gap plasmons are assembled around model bio-membranes providing molecular identification of the diffusing lipids. Our experiments clearly evidence measurement of individual lipids flexing through telltale rapid correlated vibrational shifts and intensity fluctuations in the Raman spectrum. These track molecules that undergo bending and conformational changes within the probe volume, through their interactions with the environment. This technique allows for in situ high-speed single-molecule investigations of the molecules embedded within lipid bio-membranes. It thus offers a new way to investigate the hidden dynamics of cell membranes important to a myriad of life processes.


Journal of Physical Chemistry Letters | 2016

Observing Single Molecules Complexing with Cucurbit[7]uril through Nanogap Surface-Enhanced Raman Spectroscopy

Daniel O. Sigle; Setu Kasera; Lars O. Herrmann; Aniello Palma; Bart de Nijs; Felix Benz; Sumeet Mahajan; Jeremy J. Baumberg; Oren A. Scherman

In recent years, single-molecule sensitivity achievable by surface-enhanced Raman spectroscopy (SERS) has been widely reported. We use this to investigate supramolecular host-guest chemistry with the macrocyclic host cucurbit[7]uril, on a few-to-single-molecule level. A nanogap geometry, comprising individual gold nanoparticles on a planar gold surface spaced by a single layer of molecules, gives intense SERS signals. Plasmonic coupling between the particle and the surface leads to strongly enhanced optical fields in the gap between them, with single-molecule sensitivity established using a modification of the well-known bianalyte method. Changes in the Raman modes of the host molecule are observed when single guests included inside its cavity internally stretch it. Anisotropic intermolecular interactions with the guest are found which show additional distinct features in the Raman modes of the host molecule.

Collaboration


Dive into the Daniel O. Sigle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart de Nijs

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Felix Benz

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Jan Mertens

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Christos Tserkezis

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Javier Aizpurua

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Bowman

Engineering and Physical Sciences Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge