Felix Benz
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Felix Benz.
Nature | 2016
Rohit Chikkaraddy; Bart de Nijs; Felix Benz; Steven J. Barrow; Oren A. Scherman; Edina Rosta; Angela Demetriadou; Peter T. Fox; Ortwin Hess; Jeremy J. Baumberg
Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.
Science | 2016
Felix Benz; Mikolaj K. Schmidt; Alexander Dreismann; Rohit Chikkaraddy; Yao Zhang; Angela Demetriadou; Cloudy Carnegie; Hamid Ohadi; Bart de Nijs; Ruben Esteban; Javier Aizpurua; Jeremy J. Baumberg
A cool route to nanospectroscopy Confining light to a cavity is often used to enhance the interaction between the light and a particle stored within the cavity. Benz et al. worked with a self-assembled monolayer of biphenyl-4-thiol molecules sandwiched between a gold film and a gold nanoparticle. They used laser irradiation to move atoms in the nanoparticle and produced a “picocavity” that was stable at cryogenic temperatures. The authors were then able to obtain time-dependent Raman spectra from individual molecules. Such subwavelength cavities that can localize light to volumes well below 1 nm3 will enable optical experiments on the atomic scale. Science, this issue p. 726 Strongly subwavelength optical cavities can be used to spectroscopically probe single molecules. Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer (“picocavities”), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 106 enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.
Nano Letters | 2015
Felix Benz; Christos Tserkezis; Lars O. Herrmann; Bart de Nijs; Alan Sanders; Daniel O. Sigle; Laurynas Pukenas; Stephen D. Evans; Javier Aizpurua; Jeremy J. Baumberg
Gold nanoparticles are separated above a planar gold film by 1.1 nm thick self-assembled molecular monolayers of different conductivities. Incremental replacement of the nonconductive molecules with a chemically equivalent conductive version differing by only one atom produces a strong 50 nm blue-shift of the coupled plasmon. With modeling this gives a conductance of 0.17G0 per biphenyl-4,4′-dithiol molecule and a total conductance across the plasmonic junction of 30G0. Our approach provides a reliable tool quantifying the number of molecules in each plasmonic hotspot, here <200.
Journal of Physical Chemistry Letters | 2016
Felix Benz; Rohit Chikkaraddy; Andrew Salmon; Hamid Ohadi; Bart de Nijs; Jan Mertens; Cloudy Carnegie; Richard Bowman; Jeremy J. Baumberg
Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing.
Scientific Reports | 2015
Richard W. Taylor; Felix Benz; Daniel O. Sigle; Richard Bowman; Peng Bao; Johannes S. Roth; George R. Heath; Stephen D. Evans; Jeremy J. Baumberg
Interrogating individual molecules within bio-membranes is key to deepening our understanding of biological processes essential for life. Using Raman spectroscopy to map molecular vibrations is ideal to non-destructively ‘fingerprint’ biomolecules for dynamic information on their molecular structure, composition and conformation. Such tag-free tracking of molecules within lipid bio-membranes can directly connect structure and function. In this paper, stable co-assembly with gold nano-components in a ‘nanoparticle-on-mirror’ geometry strongly enhances the local optical field and reduces the volume probed to a few nm3, enabling repeated measurements for many tens of minutes on the same molecules. The intense gap plasmons are assembled around model bio-membranes providing molecular identification of the diffusing lipids. Our experiments clearly evidence measurement of individual lipids flexing through telltale rapid correlated vibrational shifts and intensity fluctuations in the Raman spectrum. These track molecules that undergo bending and conformational changes within the probe volume, through their interactions with the environment. This technique allows for in situ high-speed single-molecule investigations of the molecules embedded within lipid bio-membranes. It thus offers a new way to investigate the hidden dynamics of cell membranes important to a myriad of life processes.
Journal of Physical Chemistry Letters | 2016
Daniel O. Sigle; Setu Kasera; Lars O. Herrmann; Aniello Palma; Bart de Nijs; Felix Benz; Sumeet Mahajan; Jeremy J. Baumberg; Oren A. Scherman
In recent years, single-molecule sensitivity achievable by surface-enhanced Raman spectroscopy (SERS) has been widely reported. We use this to investigate supramolecular host-guest chemistry with the macrocyclic host cucurbit[7]uril, on a few-to-single-molecule level. A nanogap geometry, comprising individual gold nanoparticles on a planar gold surface spaced by a single layer of molecules, gives intense SERS signals. Plasmonic coupling between the particle and the surface leads to strongly enhanced optical fields in the gap between them, with single-molecule sensitivity established using a modification of the well-known bianalyte method. Changes in the Raman modes of the host molecule are observed when single guests included inside its cavity internally stretch it. Anisotropic intermolecular interactions with the guest are found which show additional distinct features in the Raman modes of the host molecule.
ACS Photonics | 2016
Anna Lombardi; Angela Demetriadou; Lee Weller; Patrick Andrae; Felix Benz; Rohit Chikkaraddy; Javier Aizpurua; Jeremy J. Baumberg
The near-field and far-field spectral response of plasmonic systems are often assumed to be identical, due to the lack of methods that can directly compare and correlate both responses under similar environmental conditions. We develop a widely tunable optical technique to probe the near-field resonances within individual plasmonic nanostructures that can be directly compared to the corresponding far-field response. In tightly coupled nanoparticle-on-mirror constructs with nanometer-sized gaps we find >40 meV blue-shifts of the near-field compared to the dark-field scattering peak, which agrees with full electromagnetic simulations. Using a transformation optics approach, we show such shifts arise from the different spectral interference between different gap modes in the near- and far-field. The control and tuning of near-field and far-field responses demonstrated here is of paramount importance in the design of optical nanostructures for field-enhanced spectroscopy, as well as to control near-field activity monitored through the far-field of nano-optical devices.
Nano Letters | 2016
Jan Mertens; Angela Demetriadou; Richard Bowman; Felix Benz; M-E Kleemann; Christos Tserkezis; Yumeng Shi; Hui Ying Yang; Ortwin Hess; Javier Aizpurua; Jeremy J. Baumberg
We report the light-induced formation of conductive links across nanometer-wide insulating gaps. These are realized by incorporating spacers of molecules or 2D monolayers inside a gold plasmonic nanoparticle-on-mirror (NPoM) geometry. Laser irradiation of individual NPoMs controllably reshapes and tunes the plasmonic system, in some cases forming conductive bridges between particle and substrate, which shorts the nanometer-wide plasmonic gaps geometrically and electronically. Dark-field spectroscopy monitors the bridge formation in situ, revealing strong plasmonic mode mixing dominated by clear anticrossings. Finite difference time domain simulations confirm this spectral evolution, which gives insights into the metal filament formation. A simple analytic cavity model describes the observed plasmonic mode hybridization between tightly confined plasmonic cavity modes and a radiative antenna mode sustained in the NPoM. Our results show how optics can reveal the properties of electrical transport across well-defined metallic nanogaps to study and develop technologies such as resistive memory devices (memristors).
Small | 2015
Tao Ding; Lars O. Herrmann; Bart de Nijs; Felix Benz; Jeremy J. Baumberg
Au nanoparticles (NPs) deposited on a substrate function as ring shaped colloidal shadow masks. Using e-beam evaporation of gold, nanometer sized gaps are formed as a result. The size of these gaps can be accurately tuned by controlling the thickness of the gold deposition, thereby tuning the plasmonic coupling of the NPs with the substrate. The clean cavity produced between the Au NPs and the Au film provides an excellent SERS platform for trace molecule detection.
Optics Express | 2015
Felix Benz; Bart de Nijs; Christos Tserkezis; Rohit Chikkaraddy; Daniel O. Sigle; Laurynas Pukenas; Stephen D. Evans; Javier Aizpurua; Jeremy J. Baumberg
We develop an analytic circuit model for coupled plasmonic dimers separated by small gaps that provides a complete account of the optical resonance wavelength. Using a suitable equivalent circuit, it shows how partially conducting links can be treated and provides quantitative agreement with both experiment and full electromagnetic simulations. The model highlights how in the conducting regime, the kinetic inductance of the linkers set the spectral blue-shifts of the coupled plasmon.