Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel P. Howsmon is active.

Publication


Featured researches published by Daniel P. Howsmon.


PLOS Computational Biology | 2017

Classification and adaptive behavior prediction of children with autism spectrum disorder based upon multivariate data analysis of markers of oxidative stress and DNA methylation

Daniel P. Howsmon; Uwe Kruger; Stepan Melnyk; S. Jill James; Juergen Hahn

The number of diagnosed cases of Autism Spectrum Disorders (ASD) has increased dramatically over the last four decades; however, there is still considerable debate regarding the underlying pathophysiology of ASD. This lack of biological knowledge restricts diagnoses to be made based on behavioral observations and psychometric tools. However, physiological measurements should support these behavioral diagnoses in the future in order to enable earlier and more accurate diagnoses. Stepping towards this goal of incorporating biochemical data into ASD diagnosis, this paper analyzes measurements of metabolite concentrations of the folate-dependent one-carbon metabolism and transulfuration pathways taken from blood samples of 83 participants with ASD and 76 age-matched neurotypical peers. Fisher Discriminant Analysis enables multivariate classification of the participants as on the spectrum or neurotypical which results in 96.1% of all neurotypical participants being correctly identified as such while still correctly identifying 97.6% of the ASD cohort. Furthermore, kernel partial least squares is used to predict adaptive behavior, as measured by the Vineland Adaptive Behavior Composite score, where measurement of five metabolites of the pathways was sufficient to predict the Vineland score with an R2 of 0.45 after cross-validation. This level of accuracy for classification as well as severity prediction far exceeds any other approach in this field and is a strong indicator that the metabolites under consideration are strongly correlated with an ASD diagnosis but also that the statistical analysis used here offers tremendous potential for extracting important information from complex biochemical data sets.


data and text mining in bioinformatics | 2014

Entity Linking for Biomedical Literature

Jinguang Zheng; Daniel P. Howsmon; Boliang Zhang; Juergen Hahn; Deborah L. McGuinness; James A. Hendler; Heng Ji

The Entity Linking (EL) task links entity mentions from an unstructured document to entities in a knowledge base. Although this problem is well-studied in news and social media, this problem has not received much attention in the life science domain. One outcome of tackling the EL problem in the life sciences domain is to enable scientists to build computational models of biological processes with more efficiency. However, simply applying a news-trained entity linker produces inadequate results. Since existing supervised approaches require a large amount of manually-labeled training data, which is currently unavailable for the life science domain, we propose a novel unsupervised collective inference approach to link entities from unstructured full texts of biomedical literature to 300 ontologies. The approach leverages the rich semantic information and structures in ontologies for similarity computation and entity ranking. Without using any manual annotation, our approach significantly outperforms state-of-the-art supervised EL method (9% absolute gain in linking accuracy). Furthermore, the state-of-the-art supervised EL method requires 15,000 manually annotated entity mentions for training. These promising results establish a benchmark for the EL task in the life science domain1. We also provide in depth analysis and discussion on both challenges and opportunities on automatic knowledge enrichment for scientific literature. In this paper, we propose a novel unsupervised collective inference approach to address the EL problem in a new domain. We show that our unsupervised approach is able to outperform a current state-of-the-art supervised approach that has been trained with a large amount of manually labeled data. Life science presents an underrepresented domain for applying EL techniques. By providing a small benchmark data set and identifying opportunities, we hope to stimulate discussions across natural language processing and bioinformatics and motivate others to develop techniques for this largely untapped domain.


Diabetes Care | 2017

Application of Zone Model Predictive Control Artificial Pancreas During Extended Use of Infusion Set and Sensor: A Randomized Crossover-Controlled Home-Use Trial

Gregory P. Forlenza; Sunil Deshpande; Trang T. Ly; Daniel P. Howsmon; Faye Cameron; Nihat Baysal; Eric Mauritzen; Tatiana Marcal; Lindsey Towers; B. Wayne Bequette; Lauren M. Huyett; Jordan E. Pinsker; Ravi Gondhalekar; Francis J. Doyle; David M. Maahs; Bruce Buckingham; Eyal Dassau

OBJECTIVE As artificial pancreas (AP) becomes standard of care, consideration of extended use of insulin infusion sets (IIS) and continuous glucose monitors (CGMs) becomes vital. We conducted an outpatient randomized crossover study to test the safety and efficacy of a zone model predictive control (zone-MPC)–based AP system versus sensor augmented pump (SAP) therapy in which IIS and CGM failures were provoked via extended wear to 7 and 21 days, respectively. RESEARCH DESIGN AND METHODS A smartphone-based AP system was used by 19 adults (median age 23 years [IQR 10], mean 8.0 ± 1.7% HbA1c) over 2 weeks and compared with SAP therapy for 2 weeks in a crossover, unblinded outpatient study with remote monitoring in both study arms. RESULTS AP improved percent time 70–140 mg/dL (48.1 vs. 39.2%; P = 0.016) and time 70–180 mg/dL (71.6 vs. 65.2%; P = 0.008) and decreased median glucose (141 vs. 153 mg/dL; P = 0.036) and glycemic variability (SD 52 vs. 55 mg/dL; P = 0.044) while decreasing percent time <70 mg/dL (1.3 vs. 2.7%; P = 0.001). AP also improved overnight control, as measured by mean glucose at 0600 h (140 vs. 158 mg/dL; P = 0.02). IIS failures (1.26 ± 1.44 vs. 0.78 ± 0.78 events; P = 0.13) and sensor failures (0.84 ± 0.6 vs. 1.1 ± 0.73 events; P = 0.25) were similar between AP and SAP arms. Higher percent time in closed loop was associated with better glycemic outcomes. CONCLUSIONS Zone-MPC significantly and safely improved glycemic control in a home-use environment despite prolonged CGM and IIS wear. This project represents the first home-use AP study attempting to provoke and detect component failure while successfully maintaining safety and effective glucose control.


PLOS ONE | 2017

Significant association of urinary toxic metals and autism-related symptoms - A nonlinear statistical analysis with cross validation

James B. Adams; Daniel P. Howsmon; Uwe Kruger; Elizabeth Geis; Eva Gehn; Valeria Fimbres; Elena L. Pollard; Jessica Mitchell; Julie Ingram; Robert Hellmers; David Quig; Juergen Hahn

Introduction A number of previous studies examined a possible association of toxic metals and autism, and over half of those studies suggest that toxic metal levels are different in individuals with Autism Spectrum Disorders (ASD). Additionally, several studies found that those levels correlate with the severity of ASD. Methods In order to further investigate these points, this paper performs the most detailed statistical analysis to date of a data set in this field. First morning urine samples were collected from 67 children and adults with ASD and 50 neurotypical controls of similar age and gender. The samples were analyzed to determine the levels of 10 urinary toxic metals (UTM). Autism-related symptoms were assessed with eleven behavioral measures. Statistical analysis was used to distinguish participants on the ASD spectrum and neurotypical participants based upon the UTM data alone. The analysis also included examining the association of autism severity with toxic metal excretion data using linear and nonlinear analysis. “Leave-one-out” cross-validation was used to ensure statistical independence of results. Results and Discussion Average excretion levels of several toxic metals (lead, tin, thallium, antimony) were significantly higher in the ASD group. However, ASD classification using univariate statistics proved difficult due to large variability, but nonlinear multivariate statistical analysis significantly improved ASD classification with Type I/II errors of 15% and 18%, respectively. These results clearly indicate that the urinary toxic metal excretion profiles of participants in the ASD group were significantly different from those of the neurotypical participants. Similarly, nonlinear methods determined a significantly stronger association between the behavioral measures and toxic metal excretion. The association was strongest for the Aberrant Behavior Checklist (including subscales on Irritability, Stereotypy, Hyperactivity, and Inappropriate Speech), but significant associations were found for UTM with all eleven autism-related assessments with cross-validation R2 values ranging from 0.12–0.48.


Journal of diabetes science and technology | 2015

Hypo- and Hyperglycemic Alarms: Devices and Algorithms.

Daniel P. Howsmon; B. Wayne Bequette

Soon after the discovery that insulin regulates blood glucose by Banting and Best in 1922, the symptoms and risks associated with hypoglycemia became widely recognized. This article reviews devices to warn individuals of impending hypo- and hyperglycemia; biosignals used by these devices include electroencephalography, electrocardiography, skin galvanic resistance, diabetes alert dogs, and continuous glucose monitors (CGMs). While systems based on other technology are increasing in performance and decreasing in size, CGM technology remains the best method for both reactive and predictive alarming of hypo- or hyperglycemia.


Anaerobe | 2018

Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders

Dae Wook Kang; Zehra Esra Ilhan; Nancy G. Isern; David W. Hoyt; Daniel P. Howsmon; Michael Shaffer; Catherine A. Lozupone; Juergen Hahn; James B. Adams; Rosa Krajmalnik-Brown

Evidence supporting that gut problems are linked to ASD symptoms has been accumulating both in humans and animal models of ASD. Gut microbes and their metabolites may be linked not only to GI problems but also to ASD behavior symptoms. Despite this high interest, most previous studies have looked mainly at microbial structure, and studies on fecal metabolites are rare in the context of ASD. Thus, we aimed to detect fecal metabolites that may be present at significantly different concentrations between 21 children with ASD and 23 neurotypical children and to investigate its possible link to human gut microbiome. Using 1H-NMR spectroscopy and 16S rRNA gene amplicon sequencing, we examined metabolite profiles and microbial compositions in fecal samples, respectively. Of the 59 metabolites detected, isopropanol concentrations were significantly higher in feces of children with ASD after multiple testing corrections. We also observed similar trends of fecal metabolites to previous studies; children with ASD have higher fecal p-cresol and possibly lower GABA concentrations. In addition, Fisher Discriminant Analysis (FDA) with leave-out-validation suggested that a group of metabolites-caprate, nicotinate, glutamine, thymine, and aspartate-may potentially function as a modest biomarker to separate ASD participants from the neurotypical group (78% sensitivity and 81% specificity). Consistent with our previous Arizona cohort study, we also confirmed lower gut microbial diversity and reduced relative abundances of phylotypes most closely related to Prevotella copri in children with ASD. After multiple testing corrections, we also learned that relative abundances of Feacalibacterium prausnitzii and Haemophilus parainfluenzae were lower in feces of children with ASD. Despite a relatively short list of fecal metabolites, the data in this study support that children with ASD have altered metabolite profiles in feces when compared with neurotypical children and warrant further investigation of metabolites in larger cohorts.


Journal of Theoretical Biology | 2017

Mathematical modeling of the methionine cycle and transsulfuration pathway in individuals with autism spectrum disorder

Troy Vargason; Daniel P. Howsmon; Stepan Melnyk; S. Jill James; Juergen Hahn

Previous research has shown a connection between metabolic abnormalities in the methionine cycle and transsulfuration pathway and autism spectrum disorder. Using clinical data from a case-control study investigating measurements of transmethylation and transsulfuration metabolites, a steady-state model of these metabolites in liver cells was developed and participant-specific parameters were identified. Comparison of mean parameter values and parameter distributions between neurotypical study participants and those on the autism spectrum revealed significant differences for four model parameters. Sensitivity analysis identified the parameter describing the rate of glutamylcysteine synthesis, the rate-limiting step in glutathione production, to be particularly important in determining steady-state metabolite concentrations. These results may provide insight into key reactions to target for potential intervention strategies relating to autism spectrum disorder.


2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC) | 2015

Steps towards a closed-loop artificial pancreas

B.W. Bequette; Nihat Baysal; Daniel P. Howsmon; F. Cameron

A closed-loop artificial pancreas has been the “Holy Grail” of efforts to improve the medical care and lifestyle of individuals with type 1 diabetes. In this talk we provide an overview of research activities related to an artificial pancreas, beginning with a history of glucose sensing technologies, insulin delivery systems, and algorithms to connect sensor signals and insulin delivery rates. Current challenges include sensor calibration errors and signal artifacts, insulin infusion set failure, uncertain meal glucose dynamics, exercise effects, and insulin-glucose sensitivity variability.


Sensors | 2017

Continuous Glucose Monitoring Enables the Detection of Losses in Infusion Set Actuation (LISAs)

Daniel P. Howsmon; Faye Cameron; Nihat Baysal; Trang T. Ly; Gregory P. Forlenza; David M. Maahs; Bruce Buckingham; Juergen Hahn; B. W. Bequette

Reliable continuous glucose monitoring (CGM) enables a variety of advanced technology for the treatment of type 1 diabetes. In addition to artificial pancreas algorithms that use CGM to automate continuous subcutaneous insulin infusion (CSII), CGM can also inform fault detection algorithms that alert patients to problems in CGM or CSII. Losses in infusion set actuation (LISAs) can adversely affect clinical outcomes, resulting in hyperglycemia due to impaired insulin delivery. Prolonged hyperglycemia may lead to diabetic ketoacidosis—a serious metabolic complication in type 1 diabetes. Therefore, an algorithm for the detection of LISAs based on CGM and CSII signals was developed to improve patient safety. The LISA detection algorithm is trained retrospectively on data from 62 infusion set insertions from 20 patients. The algorithm collects glucose and insulin data, and computes relevant fault metrics over two different sliding windows; an alarm sounds when these fault metrics are exceeded. With the chosen algorithm parameters, the LISA detection strategy achieved a sensitivity of 71.8% and issued 0.28 false positives per day on the training data. Validation on two independent data sets confirmed that similar performance is seen on data that was not used for training. The developed algorithm is able to effectively alert patients to possible infusion set failures in open-loop scenarios, with limited evidence of its extension to closed-loop scenarios.


BMC Medical Informatics and Decision Making | 2015

Entity linking for biomedical literature

Jinguang Zheng; Daniel P. Howsmon; Boliang Zhang; Juergen Hahn; Deborah L. McGuinness; James A. Hendler; Heng Ji

BackgroundThe Entity Linking (EL) task links entity mentions from an unstructured document to entities in a knowledge base. Although this problem is well-studied in news and social media, this problem has not received much attention in the life science domain. One outcome of tackling the EL problem in the life sciences domain is to enable scientists to build computational models of biological processes with more efficiency. However, simply applying a news-trained entity linker produces inadequate results.MethodsSince existing supervised approaches require a large amount of manually-labeled training data, which is currently unavailable for the life science domain, we propose a novel unsupervised collective inference approach to link entities from unstructured full texts of biomedical literature to 300 ontologies. The approach leverages the rich semantic information and structures in ontologies for similarity computation and entity ranking.ResultsWithout using any manual annotation, our approach significantly outperforms state-of-the-art supervised EL method (9% absolute gain in linking accuracy). Furthermore, the state-of-the-art supervised EL method requires 15,000 manually annotated entity mentions for training. These promising results establish a benchmark for the EL task in the life science domain. We also provide in depth analysis and discussion on both challenges and opportunities on automatic knowledge enrichment for scientific literature.ConclusionsIn this paper, we propose a novel unsupervised collective inference approach to address the EL problem in a new domain. We show that our unsupervised approach is able to outperform a current state-of-the-art supervised approach that has been trained with a large amount of manually labeled data. Life science presents an underrepresented domain for applying EL techniques. By providing a small benchmark data set and identifying opportunities, we hope to stimulate discussions across natural language processing and bioinformatics and motivate others to develop techniques for this largely untapped domain.

Collaboration


Dive into the Daniel P. Howsmon's collaboration.

Top Co-Authors

Avatar

Juergen Hahn

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Nihat Baysal

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

B. Wayne Bequette

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory P. Forlenza

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah L. McGuinness

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Eric Mauritzen

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge